Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Biol ; 13(2): e1002051, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25665164

RESUMO

As some of the most widely utilised intercellular signalling molecules, transforming growth factor ß (TGFß) superfamily members play critical roles in normal development and become disrupted in human disease. Establishing appropriate levels of TGFß signalling involves positive and negative feedback, which are coupled and driven by the same signal transduction components (R-Smad transcription factor complexes), but whether and how the regulation of the two can be distinguished are unknown. Genome-wide comparison of published ChIP-seq datasets suggests that LIM domain binding proteins (Ldbs) co-localise with R-Smads at a substantial subset of R-Smad target genes including the locus of inhibitory Smad7 (I-Smad7), which mediates negative feedback for TGFß signalling. We present evidence suggesting that zebrafish Ldb2a binds and directly activates the I-Smad7 gene, whereas it binds and represses the ligand gene, Squint (Sqt), which drives positive feedback. Thus, the fine tuning of TGFß signalling derives from positive and negative control by Ldb2a. Expression of ldb2a is itself activated by TGFß signals, suggesting potential feed-forward loops that might delay the negative input of Ldb2a to the positive feedback, as well as the positive input of Ldb2a to the negative feedback. In this way, precise gene expression control by Ldb2a enables an initial build-up of signalling via a fully active positive feedback in the absence of buffering by the negative feedback. In Ldb2a-deficient zebrafish embryos, homeostasis of TGFß signalling is perturbed and signalling is stably enhanced, giving rise to excess mesoderm and endoderm, an effect that can be rescued by reducing signalling by the TGFß family members, Nodal and BMP. Thus, Ldb2a is critical to the homeostatic control of TGFß signalling and thereby embryonic patterning.


Assuntos
Padronização Corporal/genética , Retroalimentação Fisiológica , Proteínas com Domínio LIM/genética , Ligantes da Sinalização Nodal/metabolismo , Proteína Smad7/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Animais , Sequência de Bases , Embrião não Mamífero , Endoderma/citologia , Endoderma/embriologia , Endoderma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Proteínas com Domínio LIM/antagonistas & inibidores , Proteínas com Domínio LIM/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Camundongos , Microinjeções , Dados de Sequência Molecular , Morfolinos/genética , Morfolinos/metabolismo , Ligantes da Sinalização Nodal/genética , Alinhamento de Sequência , Transdução de Sinais , Proteína Smad7/genética , Transcrição Gênica , Fator de Crescimento Transformador beta/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/deficiência
2.
Nat Commun ; 5: 5588, 2014 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-25429520

RESUMO

Haematopoietic stem cells (HSCs) are produced during embryogenesis from the floor of the dorsal aorta. The localization of HSCs is dependent on the presence of instructive signals on the ventral side of the vessel. The nature of the extrinsic molecular signals that control the aortic haematopoietic niche is currently poorly understood. Here we demonstrate a novel requirement for FGF signalling in the specification of aortic haemogenic endothelium. Our results demonstrate that FGF signalling normally acts to repress BMP activity in the subaortic mesenchyme through transcriptional inhibition of bmp4, as well as through activation of two BMP antagonists, noggin2 and gremlin1a. Taken together, these findings demonstrate a key role for FGF signalling in establishment of the developmental HSC niche via its regulation of BMP activity in the subaortic mesenchyme. These results should help inform strategies to recapitulate the development of HSCs in vitro from pluripotent precursors.


Assuntos
Proteína Morfogenética Óssea 4/genética , Proteínas de Transporte/genética , Diferenciação Celular , Endotélio Vascular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Peixe-Zebra/genética , Animais , Aorta/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proteínas de Transporte/metabolismo , Mesoderma/metabolismo , Transdução de Sinais , Nicho de Células-Tronco , Fator A de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
3.
Cancer Cell ; 24(2): 229-41, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23871637

RESUMO

Limited clinical benefits derived from anti-VEGF therapy have driven the identification of new targets involved in tumor angiogenesis. Here, we report an integrative meta-analysis to define the transcriptional program underlying angiogenesis in human cancer. This approach identified ELTD1, an orphan G-protein-coupled receptor whose expression is induced by VEGF/bFGF and repressed by DLL4 signaling. Extensive analysis of multiple cancer types demonstrates significant upregulation of ELTD1 in tumor-associated endothelial cells, with a higher expression correlating with favorable prognosis. Importantly, ELTD1 silencing impairs endothelial sprouting and vessel formation in vitro and in vivo, drastically reducing tumor growth and greatly improving survival. Collectively, these results provide insight into the regulation of tumor angiogenesis and highlight ELTD1 as key player in blood vessel formation.


Assuntos
Células Endoteliais/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Processos de Crescimento Celular/fisiologia , Células Endoteliais/patologia , Feminino , Predisposição Genética para Doença , Células HCT116 , Humanos , Camundongos , Camundongos Nus , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais
4.
Development ; 138(15): 3235-45, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21750034

RESUMO

Fibroblast growth factor (Fgf) has been implicated in the control of heart size during development, although whether this is by controlling cell fate, survival or proliferation has not been clear. Here, we show that Fgf, without affecting survival or proliferation, acts during gastrulation to drive cardiac fate and restrict anterior haemangioblast fate in zebrafish embryos. The haemangioblast programme was thought to be activated before the cardiac programme and is repressive towards it, suggesting that activation by Fgf of the cardiac programme might be via suppression of the haemangioblast programme. However, we show that the cardiac regulator nkx2.5 can also repress the haemangioblast programme and, furthermore, that cardiac specification still requires Fgf signalling even when haemangioblast regulators are independently suppressed. We further show that nkx2.5 and the cloche candidate gene lycat are expressed during gastrulation and regulated by Fgf, and that nkx2.5 overexpression, together with loss of the lycat targets etsrp and scl can stably induce expansion of the heart. We conclude that Fgf controls cardiac and haemangioblast fates by the simultaneous regulation of haemangioblast and cardiac regulators. We propose that elevation of Fgf signalling in the anterior haemangioblast territory could have led to its recruitment into the heart field during evolution, increasing the size of the heart.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Coração/embriologia , Hemangioblastos/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/anatomia & histologia , Peixe-Zebra/embriologia , Aciltransferases/genética , Aciltransferases/metabolismo , Animais , Proliferação de Células , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/fisiologia , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Coração/anatomia & histologia , Coração/crescimento & desenvolvimento , Coração/fisiologia , Hemangioblastos/citologia , Proteína Homeobox Nkx-2.5 , Morfogênese/fisiologia , Transdução de Sinais/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...