Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pest Manag Sci ; 79(10): 3581-3592, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37178347

RESUMO

BACKGROUND: Resistance to 2,4-Dichlorophenoxyacetic acid (2,4-D) has been reported in several weed species since the 1950s; however, a biotype of Conyza sumatrensis showing a novel physiology of the rapid response minutes after herbicide application was reported in 2017. The objective of this research was to investigate the mechanisms of resistance and identify transcripts associated with the rapid physiological response of C. sumatrensis to 2,4-D herbicide. RESULTS: Differences were found in 2,4-D absorption between the resistant and susceptible biotypes. Herbicide translocation was reduced in the resistant biotype compared to the susceptible. In resistant plants 98.8% of [14 C] 2,4-D was found in the treated leaf, whereas ≈13% translocated to other plant parts in the susceptible biotype at 96 h after treatment. Resistant plants did not metabolize [14 C] 2,4-D and had only intact [14 C] 2,4-D at 96 h after application, whereas susceptible plants metabolized [14 C] 2,4-D into four detected metabolites, consistent with reversible conjugation metabolites found in other 2,4-D sensitive plant species. Pre-treatment with the cytochrome P450 inhibitor malathion did not enhance 2,4-D sensitivity in either biotype. Following treatment with 2,4-D, resistant plants showed increased expression of transcripts within plant defense response and hypersensitivity pathways, whereas both sensitive and resistant plants showed increased expression of auxin-response transcripts. CONCLUSION: Our results demonstrate that reduced 2,4-D translocation contributes to resistance in the C. sumatrensis biotype. The reduction in 2,4-D transport is likely to be a consequence of the rapid physiological response to 2,4-D in resistant C. sumatrensis. Resistant plants had increased expression of auxin-responsive transcripts, indicating that a target-site mechanism is unlikely. © 2023 Society of Chemical Industry.


Assuntos
Conyza , Herbicidas , Conyza/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Herbicidas/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacologia , Expressão Gênica
2.
J Environ Sci Health B ; 55(12): 1114-1120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296266

RESUMO

Sugarcane straw may work as a physical barrier for pre-emergent herbicides and interact with their molecules, increasing sorption process. Adjuvants may change herbicides dynamics in the environment and improve their efficiency for weed control. The objective of this work was to evaluate sorption and desorption of pendimethalin alone and in mixture with adjuvant in soil and sugarcane straw. Sorption experiments were performed using pendimethalin alone and in mixture with vegetable oil with herbicide solution concentrations ranging between 2.5 and 40 µg mL-1 for both conditions. Sorption distribution coefficient (Kd) for soil was 18.48 mL g-1 using pendimethalin alone. Kd value was not determined when pendimethalin was in mixture with adjuvant due to the complete retention of the herbicide in the soil regardless of the initial aqueous phase concentration. Sugarcane straw sorption experiment had Kd values corresponding to 355.52 and 27.24 mL g-1 for pendimethalin alone and in mixture with adjuvant, respectively, indicating the addition of vegetable oil may significantly decrease pendimethalin retention in the straw and could improve weed control. Besides all desorption coefficients were higher than the respective sorption coefficients, which means that the sorption process may be considered irreversible.


Assuntos
Compostos de Anilina/química , Herbicidas/química , Saccharum , Solo/química , Adsorção , Brasil , Cromatografia Líquida de Alta Pressão , Caules de Planta/química , Água , Controle de Plantas Daninhas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...