Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
medRxiv ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38562815

RESUMO

Early childhood caries (ECC) is the most common non-communicable childhood disease. It is an important health problem with known environmental and social/behavioral influences that lacks evidence for specific associated genetic risk loci. To address this knowledge gap, we conducted a genome-wide association study of ECC in a multi-ancestry population of U.S. preschool-age children (n=6,103) participating in a community-based epidemiologic study of early childhood oral health. Calibrated examiners used ICDAS criteria to measure ECC with the primary trait using the dmfs index with decay classified as macroscopic enamel loss (ICDAS ≥3). We estimated heritability, concordance rates, and conducted genome-wide association analyses to estimate overall genetic effects; the effects stratified by sex, household water fluoride, and dietary sugar; and leveraged the combined gene/gene-environment effects using the 2-degree-of-freedom (2df) joint test. The common genetic variants explained 24% of the phenotypic variance (heritability) of the primary ECC trait and the concordance rate was higher with a higher degree of relatedness. We identified 21 novel non-overlapping genome-wide significant loci for ECC. Two loci, namely RP11-856F16 . 2 (rs74606067) and SLC41A3 (rs71327750) showed evidence of association with dental caries in external cohorts, namely the GLIDE consortium adult cohort (n=∼487,000) and the GLIDE pediatric cohort (n=19,000), respectively. The gene-based tests identified TAAR6 as a genome-wide significant gene. Implicated genes have relevant biological functions including roles in tooth development and taste. These novel associations expand the genomics knowledge base for this common childhood disease and underscore the importance of accounting for sex and pertinent environmental exposures in genetic investigations of oral health.

2.
J Dent Res ; 100(6): 615-622, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33423574

RESUMO

Dental caries is characterized by a dysbiotic shift at the biofilm-tooth surface interface, yet comprehensive biochemical characterizations of the biofilm are scant. We used metabolomics to identify biochemical features of the supragingival biofilm associated with early childhood caries (ECC) prevalence and severity. The study's analytical sample comprised 289 children ages 3 to 5 (51% with ECC) who attended public preschools in North Carolina and were enrolled in a community-based cross-sectional study of early childhood oral health. Clinical examinations were conducted by calibrated examiners in community locations using International Caries Detection and Classification System (ICDAS) criteria. Supragingival plaque collected from the facial/buccal surfaces of all primary teeth in the upper-left quadrant was analyzed using ultra-performance liquid chromatography-tandem mass spectrometry. Associations between individual metabolites and 18 clinical traits (based on different ECC definitions and sets of tooth surfaces) were quantified using Brownian distance correlations (dCor) and linear regression modeling of log2-transformed values, applying a false discovery rate multiple testing correction. A tree-based pipeline optimization tool (TPOT)-machine learning process was used to identify the best-fitting ECC classification metabolite model. There were 503 named metabolites identified, including microbial, host, and exogenous biochemicals. Most significant ECC-metabolite associations were positive (i.e., upregulations/enrichments). The localized ECC case definition (ICDAS ≥1 caries experience within the surfaces from which plaque was collected) had the strongest correlation with the metabolome (dCor P = 8 × 10-3). Sixteen metabolites were significantly associated with ECC after multiple testing correction, including fucose (P = 3.0 × 10-6) and N-acetylneuraminate (p = 6.8 × 10-6) with higher ECC prevalence, as well as catechin (P = 4.7 × 10-6) and epicatechin (P = 2.9 × 10-6) with lower. Catechin, epicatechin, imidazole propionate, fucose, 9,10-DiHOME, and N-acetylneuraminate were among the top 15 metabolites in terms of ECC classification importance in the automated TPOT model. These supragingival biofilm metabolite findings provide novel insights in ECC biology and can serve as the basis for the development of measures of disease activity or risk assessment.


Assuntos
Cárie Dentária , Criança , Pré-Escolar , Estudos Transversais , Cárie Dentária/diagnóstico , Cárie Dentária/epidemiologia , Suscetibilidade à Cárie Dentária , Humanos , Metabolômica , North Carolina/epidemiologia , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...