Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 11(23): 2182-2203, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32577164

RESUMO

In a quest for previously unknown geroprotective natural chemicals, we used a robust cell viability assay to search for commercially available plant extracts that can substantially prolong the chronological lifespan of budding yeast. Many of these plant extracts have been used in traditional Chinese and other herbal medicines or the Mediterranean and other customary diets. Our search led to a discovery of fifteen plant extracts that significantly extend the longevity of chronologically aging yeast not limited in calorie supply. We show that each of these longevity-extending plant extracts is a geroprotector that decreases the rate of yeast chronological aging and promotes a hormetic stress response. We also show that each of the fifteen geroprotective plant extracts mimics the longevity-extending, stress-protecting, metabolic and physiological effects of a caloric restriction diet but if added to yeast cultured under non-caloric restriction conditions. We provide evidence that the fifteen geroprotective plant extracts exhibit partially overlapping effects on a distinct set of longevity-defining cellular processes. These effects include a rise in coupled mitochondrial respiration, an altered age-related chronology of changes in reactive oxygen species abundance, protection of cellular macromolecules from oxidative damage, and an age-related increase in the resistance to long-term oxidative and thermal stresses.

2.
Oncotarget ; 10(56): 5780-5816, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-31645900

RESUMO

We have recently found that PE21, an extract from the white willow Salix alba, slows chronological aging and prolongs longevity of the yeast Saccharomyces cerevisiae more efficiently than any of the previously known pharmacological interventions. Here, we investigated mechanisms through which PE21 delays yeast chronological aging and extends yeast longevity. We show that PE21 causes a remodeling of lipid metabolism in chronologically aging yeast, thereby instigating changes in the concentrations of several lipid classes. We demonstrate that such changes in the cellular lipidome initiate three mechanisms of aging delay and longevity extension. The first mechanism through which PE21 slows aging and prolongs longevity consists in its ability to decrease the intracellular concentration of free fatty acids. This postpones an age-related onset of liponecrotic cell death promoted by excessive concentrations of free fatty acids. The second mechanism of aging delay and longevity extension by PE21 consists in its ability to decrease the concentrations of triacylglycerols and to increase the concentrations of glycerophospholipids within the endoplasmic reticulum membrane. This activates the unfolded protein response system in the endoplasmic reticulum, which then decelerates an age-related decline in protein and lipid homeostasis and slows down an aging-associated deterioration of cell resistance to stress. The third mechanisms underlying aging delay and longevity extension by PE21 consists in its ability to change lipid concentrations in the mitochondrial membranes. This alters certain catabolic and anabolic processes in mitochondria, thus amending the pattern of aging-associated changes in several key aspects of mitochondrial functionality.

3.
Oncotarget ; 10(3): 313-338, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30719227

RESUMO

We have recently discovered six plant extracts that delay yeast chronological aging. Most of them affect different nodes, edges and modules of an evolutionarily conserved network of longevity regulation that integrates certain signaling pathways and protein kinases; this network is also under control of such aging-delaying chemical compounds as spermidine and resveratrol. We have previously shown that, if a strain carrying an aging-delaying single-gene mutation affecting a certain node, edge or module of the network is exposed to some of the six plant extracts, the mutation and the plant extract enhance aging-delaying efficiencies of each other so that their combination has a synergistic effect on the extent of aging delay. We therefore hypothesized that a pairwise combination of two aging-delaying plant extracts or a combination of one of these plant extracts and spermidine or resveratrol may have a synergistic effect on the extent of aging delay only if each component of this combination targets a different element of the network. To test our hypothesis, we assessed longevity-extending efficiencies of all possible pairwise combinations of the six plant extracts or of one of them and spermidine or resveratrol in chronologically aging yeast. In support of our hypothesis, we show that only pairwise combinations of naturally-occurring chemical compounds that slow aging through different nodes, edges and modules of the network delay aging in a synergistic manner.

4.
Oncotarget ; 7(32): 50845-50863, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27447556

RESUMO

Our recent study has revealed six plant extracts that slow yeast chronological aging more efficiently than any chemical compound yet described. The rate of aging in yeast is controlled by an evolutionarily conserved network of integrated signaling pathways and protein kinases. Here, we assessed how single-gene-deletion mutations eliminating each of these pathways and kinases affect the aging-delaying efficiencies of the six plant extracts. Our findings imply that these extracts slow aging in the following ways: 1) plant extract 4 decreases the efficiency with which the pro-aging TORC1 pathway inhibits the anti-aging SNF1 pathway; 2) plant extract 5 mitigates two different branches of the pro-aging PKA pathway; 3) plant extract 6 coordinates processes that are not assimilated into the network of presently known signaling pathways/protein kinases; 4) plant extract 8 diminishes the inhibitory action of PKA on SNF1; 5) plant extract 12 intensifies the anti-aging protein kinase Rim15; and 6) plant extract 21 inhibits a form of the pro-aging protein kinase Sch9 that is activated by the pro-aging PKH1/2 pathway.


Assuntos
Envelhecimento/efeitos dos fármacos , Extratos Vegetais/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Oncotarget ; 7(13): 16542-66, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26918729

RESUMO

We discovered six plant extracts that increase yeast chronological lifespan to a significantly greater extent than any of the presently known longevity-extending chemical compounds. One of these extracts is the most potent longevity-extending pharmacological intervention yet described. We show that each of the six plant extracts is a geroprotector which delays the onset and decreases the rate of yeast chronological aging by eliciting a hormetic stress response. We also show that each of these extracts has different effects on cellular processes that define longevity in organisms across phyla. These effects include the following: 1) increased mitochondrial respiration and membrane potential; 2) augmented or reduced concentrations of reactive oxygen species; 3) decreased oxidative damage to cellular proteins, membrane lipids, and mitochondrial and nuclear genomes; 4) enhanced cell resistance to oxidative and thermal stresses; and 5) accelerated degradation of neutral lipids deposited in lipid droplets. Our findings provide new insights into mechanisms through which chemicals extracted from certain plants can slow biological aging.


Assuntos
Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/antagonistas & inibidores , Saccharomyces cerevisiae/efeitos dos fármacos , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Oxirredução/efeitos dos fármacos , Plantas/química , Plantas/classificação , Espécies Reativas de Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Especificidade da Espécie , Fatores de Tempo
7.
Expert Rev Pharmacoecon Outcomes Res ; 4(2): 199-206, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19807524

RESUMO

The rapid increase of healthcare and medication costs is a growing problem for industrialized countries. Several factors contribute to this problem and solutions are imperative to help the situation. In this review, the concept of lactoceuticals is introduced and why this class of product could have an impact in reducing healthcare and medication costs is explained. The term 'lactoceuticals' is defined and the key players already involved in this field are presented. This review will also summarize and list lactoceuticals that have reached a certain market maturity, and innovative lactoceuticals that will soon appear on the market following the correct clinical investigations and regulatory homologations.

8.
Doc Ophthalmol ; 107(1): 59-69, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12906123

RESUMO

Several hereditary retinal disorders such as retinitis pigmentosa and congenital stationary night blindness compromise, sometimes exclusively, the activity of the rod pathway. Unfortunately, there are few animal models of these disorders that could help us better understand the pathophysiological processes involved. The purpose of this report is to present a pedigree of guinea pigs where, as a result of a consanguineous mating and subsequent selective breeding, we developed a new and naturally occurring animal model of a rod disorder. Analysis of the retinal function with the electroretinogram reveals that the threshold for rod-mediated electroretinograms (ERGs) is significantly increased by more than 2 log-units compared to that of normal guinea pigs. Furthermore, in response to a suprathreshold stimulus, also delivered under scotopic condition, which yield a mixed cone-rod response in normal guinea pigs, the ERG waveform in our mutant guinea pigs is almost identical (amplitude and timing of a- and b-waves) to that evoked in photopic condition. The above would thus suggest either a structural (abnormal development or absence) or a functional deficiency of the rod photoreceptors. We believe that our pedigree possibly represents a new animal model of a night blinding disorder, and that this condition is inherited as anautosomal recessive trait in the guinea pig population.


Assuntos
Animais Endogâmicos , Modelos Animais de Doenças , Cegueira Noturna/genética , Doenças dos Roedores/genética , Animais , Adaptação à Escuridão , Eletrorretinografia , Cobaias , Endogamia , Cegueira Noturna/fisiopatologia , Linhagem , Estimulação Luminosa , Células Fotorreceptoras Retinianas Bastonetes/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...