Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Physiol Biochem ; : 1-16, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630122

RESUMO

Type 2 diabetes mellitus (T2DM) is a serious endocrine and metabolic disease that is highly prevalent and causes high mortality and morbidity rates worldwide. This review aims to focus on the potential of probiotics in the management of T2DM and its complications and to summarise the various mechanisms of action of probiotics with respect to T2DM. In this review, experimental studies conducted between 2016 and 2022 were explored. The possible mechanisms of action are based on their ability to modulate the gut microbiota, boost the production of short-chain fatty acids (SCFAs) and glucagon-like peptides, inhibit α-glucosidase, elevate sirtuin 1 (SIRT1) levels while reducing fetuin-A levels, and regulate the level of inflammatory cytokines. This review recommends carrying out further studies, especially human trials, to provide robust evidence-based knowledge on the use of probiotics for the treatment of T2DM.IMPACT STATEMENTT2DM is prevalent worldwide causing high rates of morbidity and mortality.Gut microbiota play a significant role in the pathogenesis of T2DM.Probiotics can be used as possible therapeutic tools for the management of T2DM.The possible mechanisms of action of probiotics include modulation of the gut microbiota, production of SCFAs and glucagon-like peptides, inhibition of α-glucosidase, raising SIRT1, reducing fetuin-A levels, and regulating the level of inflammatory cytokines.

2.
Crit Rev Microbiol ; 48(3): 257-269, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34348558

RESUMO

The appreciation of human microbiome is gaining strong grounds in biomedical research. In addition to gut-brain axis, is the lung-brain axis, which is hypothesised to link pulmonary microbes to neurodegenerative disorders and behavioural changes. There is a need for analysis based on emerging studies to map out the prospects for lung-brain axis. In this review, relevant English literature and researches in the field of 'lung-brain axis' is reported. We recommend all the highlighted prospective studies to be integrated with an interdisciplinary approach. This might require conceptual research approaches based on physiology and pathophysiology. Multimodal aspects should include experimental animal units, while exploring the research gaps and making reference to the already existing human data. The overall microbiome medicine is gaining more ground. Aetiological paths and experimental recommendations as per prospective studies in this review will be an important guideline to develop effective treatments for any lung induced neurodegenerative diseases. An in-depth knowledge of the bi-directional communication between host and microbiome in the lung could help treatment to respiratory infections, alleviate stress, anxiety and enhanced neurological effects. The timely prevention and treatment of neurodegenerative diseases requires paradigm shift of the aetiology and more innovative experimentation.Impact statementThe overall microbiome medicine is gaining more ground. An in-depth knowledge of the bi-directional communication between host and microbiome in the lung could confer treatment to respiratory infections, alleviate stress, anxiety and enhanced neurological effects. Based on this review, we recommend all the highlighted prospective studies to be integrated and be given an interdisciplinary approach. This might require conceptual research approaches based on physiology and pathophysiology. Multimodal aspects should include experimental animal units; while exploring the research gaps and making reference to the already existing human data.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas , Infecções Respiratórias , Animais , Encéfalo , Pulmão , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...