Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(45): 18233-18240, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37943087

RESUMO

Achieving self-powered photodetection without biasing is a notable challenge for photodetectors. In this work, we demonstrate the successful fabrication of large-scale van der Waals epitaxial molybdenum disulfide (MoS2) on a p-GaN/sapphire substrate using a straightforward chemical vapor deposition (CVD) technique. Our research primarily centers on the characterization of these photodetectors produced through this method. The MoS2/GaN heterojunction photodetector showcases a broad and extensive photoresponse spanning from ultraviolet A (UVA) to near-infrared (NIR). When illuminated by a 532 nm laser, its self-powered photoresponse is characterized by a rise time (τr) of ∼18.5 ms and a decay time (τd) of ∼123.2 ms. The photodetector achieves a responsivity (R) of ∼0.13 A W-1 and a specific detectivity (D*) of ∼3.8 × 1010 Jones at zero bias. Additionally, while utilizing a 404 nm laser, the photodetector reaches a maximum R and D* of ∼1.7 × 104 A/W and ∼1.6 × 1013 Jones, respectively, at Vb = 5 V. The operational mechanism of the device can be explained by the diode characteristics involving a tunneling current in the presence of reverse bias. The exceptional performance of these photodetectors can be attributed to the pristine interface between the CVD-grown MoS2 and GaN, providing an impeccably clean tunneling surface. Additionally, our investigation has unveiled that MoS2/GaN heterostructure photodetectors, featuring MoS2 coverage percentages spanning from 20% to 50%, exhibit improved responsivity capabilities at an external bias voltage. As a result, this facile CVD growth technique for MoS2 photodetectors holds significant potential for large-scale production in the manufacturing industry.

2.
Nanoscale ; 15(6): 2586-2594, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36691938

RESUMO

Since quantum computers have been gradually introduced in countries around the world, the development of the many related quantum components that can operate independently of temperature has become more important for enabling mature products with low power dissipation and high efficiency. As an alternative to studying cryo-CMOSs (complementary metal-oxide-semiconductors) to achieve this goal, quantum tunneling devices based on 2D materials can be examined instead. In this work, a vertical graphene-based quantum tunneling transistor has been used as a frequency modulator. The transistor can operate via different quantum tunneling mechanisms and generates, by applying the appropriate bias, voltage-resistance curves characteristic of variable nonlinear resistance for both base and emitter voltages. We experimentally demonstrate frequency modulation from input signals over the range of 100 kHz to 10 MHz, enabling a tunable frequency doubler or tripler in just a single transistor. This frequency multiplication with a tunneling mechanism makes the graphene-based tunneling device a promising option for frequency electronics in the emerging field of quantum technologies.

3.
Nanoscale Horiz ; 7(12): 1533-1539, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36285561

RESUMO

The negative differential resistance (NDR) effect has been widely investigated for the development of various electronic devices. Apart from traditional semiconductor-based devices, two-dimensional (2D) transition metal dichalcogenide (TMD)-based field-effect transistors (FETs) have also recently exhibited NDR behavior in several of their heterostructures. However, to observe NDR in the form of monolayer MoS2, theoretical prediction has revealed that the material should be more profoundly affected by sulfur (S) vacancy defects. In this work, monolayer MoS2 FETs with a specific amount of S-vacancy defects are fabricated using three approaches, namely chemical treatment (KOH solution), physical treatment (electron beam bombardment), and as-grown MoS2. Based on systematic studies on the correlation of the S-vacancies with both the device's electron transport characteristics and spectroscopic analysis, the NDR has been clearly observed in the defect-engineered monolayer MoS2 FETs with an S-vacancy (VS) amount of ∼5 ± 0.5%. Consequently, stable NDR behavior can be observed at room temperature, and its peak-to-valley ratio can also be effectively modulated via the gate electric field and light intensity. Through these results, it is envisioned that more electronic applications based on defect-engineered layered TMDs will emerge in the near future.

4.
ACS Nano ; 16(6): 9297-9303, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35713188

RESUMO

Light can possess orbital angular momentum (OAM), in addition to spin angular momentum (SAM), which offers nearly infinite possible values of momentum states, allowing a wider degree of freedom for information processing and communications. The OAM of light induces a selection rule that obeys the law of conservation of angular momentum as it interacts with a material, affecting the material's optical and electrical properties. In this work, silicon nanowire field-effect transistors are subjected to light with OAM, also known as twisted light. Electrical measurements on the devices consequently reveal photocurrent enhancements after incrementing the OAM of the incident light from 0ℏ (fundamental mode) to 5ℏ. Such a phenomenon is attributed to the enhancements of the photogating and the photoconductive effects under the influence of the OAM of light, the underlying mechanism of which is proposed and discussed using energy band diagrams. With these observations, a strategy for controlling photocurrent has been introduced, which can be a realization of the application in the field of optoelectronics technology.

5.
Sci Adv ; 8(13): eabm0100, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35363526

RESUMO

Controlling the density of exciton and trion quasiparticles in monolayer two-dimensional (2D) materials at room temperature by nondestructive techniques is highly desired for the development of future optoelectronic devices. Here, the effects of different orbital angular momentum (OAM) lights on monolayer tungsten disulfide at both room temperature and low temperatures are investigated, which reveal simultaneously enhanced exciton intensity and suppressed trion intensity in the photoluminescence spectra with increasing topological charge of the OAM light. In addition, the trion-to-exciton conversion efficiency is found to increase rapidly with the OAM light at low laser power and decrease with increasing power. Moreover, the trion binding energy and the concentration of unbound electrons are estimated, which shed light on how these quantities depend on OAM. A phenomenological model is proposed to account for the experimental data. These findings pave a way toward manipulating the exciton emission in 2D materials with OAM light for optoelectronic applications.

6.
ACS Nano ; 15(9): 14822-14829, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34436860

RESUMO

Twisted light carries a defined orbital angular momentum (OAM) that can enhance forbidden transitions in atoms and even semiconductors. Such attributes can possibly lead to enhancements of the material's photogenerated carriers through improved absorption of incident light photons. The interaction of twisted light and photovoltaic material is, thus, worth studying as more efficient photovoltaic cells are essential these days due to the need for reliable and sustainable energy sources. Two-dimensional (2D) MoS2, with its favorable optoelectronic properties, is a good platform to investigate the effects of twisted light on the photon absorption efficiency of the interacting material. This work, therefore, used twisted light as the exciting light source onto a MoS2 photovoltaic device. We observed that while incrementing the incident light's quantized OAM at fixed optical power, there are apparent improvements in the device's open-circuit voltage (VOC) and short-circuit current (ISC), implying enhancements of the photoresponse. We attribute these enhancements to the OAM of light that has facilitated improved optical absorption efficiency in MoS2. This study proposes a way of unlocking the potentials of 2D-MoS2 and envisions the employment of light's OAM for future energy device applications.

7.
Nanoscale Horiz ; 6(6): 462-467, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33908543

RESUMO

All-optical switching of magnetic materials is a potential method for realizing high-efficiency and high-speed data writing in spintronics devices. The current method, which utilizes two circular helicities of light to manipulate magnetic domains, is based on femtosecond pulsed lasers. In this study, we demonstrate a new all-optical switching method using a continuous-wave Laguerre-Gaussian beam (twisted light), which allows photons to carry orbital angular momentum with discrete levels, lℏ, to modify the magnetic anisotropy of an interlayer exchange coupling system. The easy axis of the heterojunction Pt(5 nm)/Co(1.2 nm)/Ru(1.4 nm)/Co(0.4 nm)/Pt(5 nm) on a SiO2/Si substrate dramatically changed after illuminating it with a laser beam carrying a sufficient quantum number of orbital angular momentum. Based on a simple numerical calculation, we deduced that the interaction between the dynamical phase rotation of the electric field and the metal surface could generate an in-plane circular current loop that consequently induces a perpendicular stray field to change the magnetic anisotropy. This finding paves the way for developments in the field of magnetic-based spintronics using light with orbital angular momentum.

8.
ACS Nano ; 15(4): 6756-6764, 2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33734665

RESUMO

The integration of graphene and other two-dimensional (2D) materials with existing silicon semiconductor technology is highly desirable. This is due to the diverse advantages and potential applications brought about by the consequent miniaturization of the resulting electronic devices. Nevertheless, such devices that can operate at very high frequencies for high-speed applications are eminently preferred. In this work, we demonstrate a vertical graphene base hot-electron transistor that performs in the radio frequency regime. Our device exhibits a relatively high current density (∼200 A/cm2), high common base current gain (α* ∼ 99.2%), and moderate common emitter current gain (ß* ∼ 2.7) at room temperature with an intrinsic current gain cutoff frequency of around 65 GHz. Furthermore, cutoff frequency can be tuned from 54 to 65 GHz by varying the collector-base bias. We anticipate that this proposed transistor design, built by the integrated 2D material and silicon semiconductor technology, can be a potential candidate to realize extra fast radio frequency tunneling hot-carrier electronics.

9.
ACS Nano ; 15(2): 3481-3489, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33566571

RESUMO

Twisted light carries a well-defined orbital angular momentum (OAM) of lℏ per photon. The quantum number l of its OAM can be arbitrarily set, making it an excellent light source to realize high-dimensional quantum entanglement and ultrawide bandwidth optical communication structures. In spite of its interesting properties, twisted light interaction with solid state materials, particularly two-dimensional materials, is yet to be extensively studied via experiments. In this work, photoluminescence (PL) spectroscopy studies of monolayer molybdenum disulfide (MoS2), a material with ultrastrong light-matter interaction due to reduced dimensionality, are carried out under photoexcitation of twisted light. It is observed that the measured spectral peak energy increases for every increment of l of the incident light. The nonlinear l-dependence of the spectral blue shifts is well accounted for by the analysis and computational simulation of this work. More excitingly, the twisted light excitation revealed the unusual lightlike exciton band dispersion of valley excitons in monolayer transition metal dichalcogenides. This linear exciton band dispersion is predicted by previous theoretical studies and evidenced via this work's experimental setup.

10.
Nanoscale Horiz ; 5(7): 1058-1064, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32400801

RESUMO

Magnetic anisotropy (MA) is a material preference that involves magnetization aligned along a specific direction and provides a basis for spintronic devices. Here we report the first observation of strong MA in a cobalt-molybdenum disulfide (Co/MoS2) heterojunction. Element-specific magnetic images recorded with an X-ray photoemission electron microscope (PEEM) reveal that ultrathin Co films, of thickness 5 monolayers (ML) and above, form micrometer (µm)-sized domains on monolayer MoS2 flakes of size tens of µm. Image analysis shows that the magnetization of these Co domains is oriented not randomly but in directions apparently correlated with the crystal structure of the underlying MoS2. Evidence from micro-area X-ray photoelectron spectra (µ-XPS) further indicates that a small amount of charge is donated from cobalt to sulfur upon direct contact between Co and MoS2. As the ferromagnetic behavior found for Co/MoS2 is in sharp contrast with that reported earlier for non-reactive Fe/MoS2, we suggest that orbital hybridization at the interface is what makes Co/MoS2 different. Our report provides micro-magnetic and micro-spectral evidence that consolidates the knowledge required to build functional heterojunctions based on two-dimensional (2D) materials.

11.
Opt Express ; 28(2): 2456-2465, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32121935

RESUMO

An efficient and effective method to achieve high responsivity and specific detectivity, particularly for normal-incident quantum well infrared photodetectors (QWIPs), is proposed in this study. By combining superlattice (SL) structure, grating structures, and graphene monolayer onto traditional QWIP designs, a graphene-covered multicolor quantum grid infrared photodetector (QGIP) with improved optoelectrical properties is developed. The enhancements of the device's responsivity and specific detectivity are about 7-fold and 20-fold, respectively, which resulted from an increase in the charge depletion region and the generation of extra photoelectrons due to graphene-semiconductor heterojunction. This method provides a potential candidate for future high-performance photodetectors.

12.
Nanoscale ; 11(29): 13725-13730, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31309958

RESUMO

A novel physical phenomenon and advanced application have been explored in 2D low-dimensional van der Waals layered materials due to their reduced in-plane symmetry. The light-matter interaction is observed upon rapid characterization of the 2D material's crystal orientation. Here, the effects of the sample's rotation angle and the incident light's linear polarization angle on the Raman scattering of chemical vapor deposition (CVD)-grown monolayer MoS2 were investigated. The results show that the crystal orientation of monolayer MoS2 can be distinguished by analyzing the intensity ratio and frequency difference of its two dominant Raman vibration modes. In addition, an increase in the incident light's power intensity causes the Raman peaks to red shift due to the photothermal effect. Strikingly, it was found that, with an increase in the incident linear polarization angle, the out-of-plane A1g phonon mode red shifts, while the in-plane E2g1 phonon mode blue shifts. The frequency difference consequently decreases from 19.5 cm-1 to 17.4 cm-1. The anomalous lattice vibrations of monolayer MoS2 originate from the built-in strain introduced by the SiO2/Si substrate. This work paves the way for the investigation and characterization of 2D MoS2, providing further understanding of the light-matter interaction in 2D materials, which is beneficial for advanced studies on anisotropic MoS2 based electronic and photoelectric information technologies and sensing applications.

13.
J Vis Exp ; (138)2018 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-30222144

RESUMO

Two-dimensional (2D) materials have attracted huge attention due to their unique properties and potential applications. Since wafer scale synthesis of 2D materials is still in nascent stages, scientists cannot fully rely on traditional semiconductor techniques for related research. Delicate processes from locating the materials to electrode definition need to be well controlled. In this article, a universal fabrication protocol required in manufacturing nanoscale electronics, such as 2D quasi-heterojunction bipolar transistors (Q-HBT), and 2D back-gated transistors are demonstrated. This protocol includes the determination of material position, electron beam lithography (EBL), metal electrode definition, et al. A step by step narrative of the fabrication procedures for these devices are also presented. Furthermore, results show that each of the fabricated devices has achieved high performance with high repeatability. This work reveals a comprehensive description of process flow for preparing 2D nano-electronics, enables the research groups to access this information, and pave the way toward future electronics.


Assuntos
Eletrônica/instrumentação , Nanopartículas/química , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...