Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 11(1): 2164, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358506

RESUMO

Chronic bee paralysis is a well-defined viral disease of honey bees with a global distribution that until recently caused rare but severe symptomatology including colony loss. Anecdotal evidence indicates a recent increase in virus incidence in several countries, but no mention of concomitant disease. We use government honey bee health inspection records from England and Wales to test whether chronic bee paralysis is an emerging infectious disease and investigate the spatiotemporal patterns of disease. The number of chronic bee paralysis cases increased exponentially between 2007 and 2017, demonstrating chronic bee paralysis as an emergent disease. Disease is highly clustered spatially within most years, suggesting local spread, but not between years, suggesting disease burnt out with periodic reintroduction. Apiary and county level risk factors are confirmed to include scale of beekeeping operation and the history of honey bee imports. Our findings offer epidemiological insight into this damaging emerging disease.


Assuntos
Criação de Abelhas/métodos , Viroses/epidemiologia , Animais , Abelhas/virologia , Inglaterra , Entomologia , Vírus de Insetos/patogenicidade , Filogenia , País de Gales
2.
J Insect Physiol ; 106(Pt 1): 71-77, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28844654

RESUMO

One of the most important tasks of the brain is to learn and remember information associated with food. Studies in mice and Drosophila have shown that sugar rewards must be metabolisable to form lasting memories, but few other animals have been studied. Here, we trained adult, worker honeybees (Apis mellifera) in two olfactory tasks (massed and spaced conditioning) known to affect memory formation to test how the schedule of reinforcement and the nature of a sugar reward affected learning and memory. The antennae and mouthparts of honeybees were most sensitive to sucrose but glucose and fructose were equally phagostimulatory. Whether or not bees could learn the tasks depended on sugar identity and concentration. However, only bees rewarded with glucose or sucrose formed robust long-term memory. This was true for bees trained in both the massed and spaced conditioning tasks. Honeybees fed with glucose or fructose exhibited a surge in haemolymph sugar of greater than 120mM within 30s that remained elevated for as long as 20min after a single feeding event. For bees fed with sucrose, this change in haemolymph glucose and fructose occurred with a 30s delay. Our data showed that olfactory learning in honeybees was affected by sugar identity and concentration, but that olfactory memory was most strongly affected by sugar identity. Taken together, these data suggest that the neural mechanisms involved in memory formation sense rapid changes in haemolymph glucose that occur during and after conditioning.


Assuntos
Abelhas/fisiologia , Aprendizagem/fisiologia , Olfato , Animais , Comportamento Apetitivo , Açúcares
3.
PLoS One ; 12(4): e0175158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28403157

RESUMO

Gustatory receptors (Grs) expressed in insect taste neurons signal the presence of carbohydrates, sugar alcohols, CO2, bitter compounds and oviposition stimulants. The honeybee (Apis mellifera) has one of the smallest Gr gene sets (12 Gr genes) of any insect whose genome has been sequenced. Honeybees live in eusocial colonies with a division of labour and perform age-dependent behavioural tasks, primarily food collection. Here, we used RT-qPCR to quantify Gr mRNA in honeybees at two ages (newly-emerged and foraging-age adults) to examine the relationship between age-related physiology and expression of Gr genes. We measured the Gr mRNAs in the taste organs and also the brain and gut. The mRNA of all Gr genes was detected in all tissues analysed but showed plasticity in relative expression across tissues and in relation to age. Overall, Gr gene expression was higher in the taste organs than in the internal tissues but did not show an overall age-dependent difference. In contrast Gr gene expression in brain was generally higher in foragers, which may indicate greater reliance on internal nutrient sensing. Expression of the candidate sugar receptors AmGr1, AmGr2 and AmGr3 in forager brain was affected by the types of sugars bees fed on. The levels of expression in the brain were greater for AmGr1 but lower for AmGr2 and AmGr3 when bees were fed with glucose and fructose compared with sucrose. Additionally, AmGr3 mRNA was increased in starved bees compared to bees provided ad libitum sucrose. Thus, expression of these Grs in forager brain reflects both the satiety state of the bee (AmGr3) and the type of sugar on which the bee has fed.


Assuntos
Abelhas/metabolismo , Proteínas de Insetos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Fatores Etários , Envelhecimento , Animais , Abelhas/genética , Encéfalo/metabolismo , Dieta , Expressão Gênica , Proteínas de Insetos/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética
4.
J Insect Physiol ; 69: 41-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24819203

RESUMO

Obtaining the correct balance of nutrients requires that the brain integrates information about the body's nutritional state with sensory information from food to guide feeding behaviour. Learning is a mechanism that allows animals to identify cues associated with nutrients so that they can be located quickly when required. Feedback about nutritional state is essential for nutrient balancing and could influence learning. How specific this feedback is to individual nutrients has not often been examined. Here, we tested how the honeybee's nutritional state influenced the likelihood it would feed on and learn sucrose solutions containing single amino acids. Nutritional state was manipulated by pre-feeding bees with either 1M sucrose or 1M sucrose containing 100mM of isoleucine, proline, phenylalanine, or methionine 24h prior to olfactory conditioning of the proboscis extension response. We found that bees pre-fed sucrose solution consumed less of solutions containing amino acids and were also less likely to learn to associate amino acid solutions with odours. Unexpectedly, bees pre-fed solutions containing an amino acid were also less likely to learn to associate odours with sucrose the next day. Furthermore, they consumed more of and were more likely to learn when rewarded with an amino acid solution if they were pre-fed isoleucine and proline. Our data indicate that single amino acids at relatively high concentrations inhibit feeding on sucrose solutions containing them, and they can act as appetitive reinforcers during learning. Our data also suggest that select amino acids interact with mechanisms that signal nutritional sufficiency to reduce hunger. Based on these experiments, we predict that nutrient balancing for essential amino acids during learning requires integration of information about several amino acids experienced simultaneously.


Assuntos
Aminoácidos , Fenômenos Fisiológicos da Nutrição Animal , Aprendizagem por Associação , Abelhas , Animais , Comportamento Alimentar , Olfato , Sacarose
5.
Curr Biol ; 20(24): 2234-40, 2010 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-21129969

RESUMO

Avoiding toxins in food is as important as obtaining nutrition. Conditioned food aversions have been studied in animals as diverse as nematodes and humans [1, 2], but the neural signaling mechanisms underlying this form of learning have been difficult to pinpoint. Honeybees quickly learn to associate floral cues with food [3], a trait that makes them an excellent model organism for studying the neural mechanisms of learning and memory. Here we show that honeybees not only detect toxins but can also learn to associate odors with both the taste of toxins and the postingestive consequences of consuming them. We found that two distinct monoaminergic pathways mediate learned food aversions in the honeybee. As for other insect species conditioned with salt or electric shock reinforcers [4-7], learned avoidances of odors paired with bad-tasting toxins are mediated by dopamine. Our experiments are the first to identify a second, postingestive pathway for learned olfactory aversions that involves serotonin. This second pathway may represent an ancient mechanism for food aversion learning conserved across animal lineages.


Assuntos
Aprendizagem da Esquiva , Abelhas , Condicionamento Operante , Preferências Alimentares , Reforço Psicológico , Amigdalina/administração & dosagem , Animais , Dopamina/metabolismo , Eletrofisiologia , Humanos , Quinina/administração & dosagem , Receptores Acoplados a Proteínas G/metabolismo , Serotonina/metabolismo , Percepção Gustatória/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...