Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Transl Psychiatry ; 3: e328, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24301646

RESUMO

Recent genetic studies have linked mental illness to alterations in disrupted in schizophrenia 1 (DISC1), a multifunctional scaffolding protein that regulates cyclic adenosine monophosphate (cAMP) signaling via interactions with phosphodiesterase 4 (PDE4). High levels of cAMP during stress exposure impair function of the prefrontal cortex (PFC), a region gravely afflicted in mental illness. As stress can aggravate mental illness, genetic insults to DISC1 may worsen symptoms by increasing cAMP levels. The current study examined whether viral knockdown (KD) of the Disc1 gene in rat PFC increases susceptibility to stress-induced PFC dysfunction. Rats were trained in a spatial working memory task before receiving infusions of (a) an active viral construct that knocked down Disc1 in PFC (DISC1 KD group), (b) a 'scrambled' construct that had no effect on Disc1 (Scrambled group), or (c) an active construct that reduced DISC1 expression dorsal to PFC (Anatomical Control group). Data were compared with an unoperated Control group. Cognitive performance was assessed following mild restraint stress that had no effect on normal animals. DISC1 KD rats were impaired by 1 h restraint stress, whereas Scrambled, Control, and Anatomical Control groups were unaffected. Thus, knocking down Disc1 in PFC reduced the threshold for stress-induced cognitive dysfunction, possibly through disinhibited cAMP signaling at neuronal network synapses. These findings may explain why patients with DISC1 mutations may be especially vulnerable to the effects of stress.


Assuntos
Transtornos Cognitivos/metabolismo , Memória de Curto Prazo/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Córtex Pré-Frontal/fisiopatologia , Esquizofrenia/metabolismo , Estresse Psicológico/metabolismo , Animais , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/genética , AMP Cíclico/metabolismo , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Masculino , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Sprague-Dawley , Restrição Física , Esquizofrenia/complicações , Esquizofrenia/genética , Transdução de Sinais , Estresse Psicológico/genética , Sinapses/metabolismo
2.
Mol Pharmacol ; 61(1): 55-64, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11752206

RESUMO

We examined the effect of acute and chronic opioid treatment on synaptic transmission and mu-opioid receptor (MOR) endocytosis in cultures of naïve rat hippocampal neurons. Opioid agonists that activate MOR inhibited synaptic transmission at inhibitory but not excitatory autapses. [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]-enkephalin (DAMGO), morphine, and methadone were all effective at blocking inhibitory transmission. These same drugs also reduced the amplitude of voltage-dependent Ca(2+) currents in inhibitory but not excitatory neurons. Chronic treatment with all three opioids reduced the subsequent effects of a challenge with either the same drug or one of the others in individual autaptic neurons. Chronic treatment with DAMGO or methadone produced internalization of enhanced yellow fluorescent protein-tagged MOR expressed in hippocampal neurons within hours, whereas morphine produced internalization much more slowly, even when accompanied by overexpression of beta-arrestin-2. We conclude that DAMGO, methadone, and morphine all produce tolerance in single hippocampal neurons. Morphine-induced tolerance does not necessarily seem to involve receptor endocytosis.


Assuntos
Tolerância a Medicamentos/fisiologia , Entorpecentes/farmacologia , Neurônios/efeitos dos fármacos , Animais , Arrestinas/metabolismo , Bário/fisiologia , Células Cultivadas , Eletrofisiologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Distribuição Tecidual , beta-Arrestina 2 , beta-Arrestinas
3.
J Neurosci ; 21(19): 7587-97, 2001 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-11567049

RESUMO

Inhibition of calcium channels by G-protein-coupled receptors depends on the nature of the Galpha subunit, although the Gbetagamma complex is thought to be responsible for channel inhibition. Ca currents in hypothalamic neurons and N-type calcium channels expressed in HEK-293 cells showed robust inhibition by G(i)/G(o)-coupled galanin receptors (GalR1), but not by Gq-coupled galanin receptors (GalR2). However, deletions in the C terminus of alpha(1B-1) produced Ca channels that were inhibited after activation of both GalR1 and GalR2. Inhibition of protein kinase C (PKC) also revealed Ca current modulation by GalR2. Imaging studies using green fluorescent protein fusions of the C terminus of alpha(1B) demonstrated that activation of the GalR2 receptor caused translocation of the C terminus of alpha(1B-1) to the membrane and co-localization with Galphaq and PKC. Similar translocation was not seen with a C-terminal truncated splice variant, alpha(1B-2). Immunoprecipitation experiments demonstrated that Galphaq interacts directly with the C terminus of the alpha(1B) subunit. These results are consistent with a model in which local activation of PKC by channel-associated Galphaq blocks modulation of the channel by Gbetagamma released by Gq-coupled receptors.


Assuntos
Canais de Cálcio Tipo N/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Neurônios/metabolismo , Subunidades Proteicas , Receptores de Superfície Celular/metabolismo , Animais , Canais de Cálcio Tipo N/genética , Linhagem Celular , Separação Celular , Eletrofisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP , Proteínas de Ligação ao GTP/genética , Galanina/metabolismo , Proteínas de Fluorescência Verde , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Hipotálamo , Técnicas In Vitro , Rim/citologia , Rim/metabolismo , Proteínas Luminescentes/genética , Inibição Neural/fisiologia , Neurônios/citologia , Técnicas de Patch-Clamp , Ligação Proteica , Proteína Quinase C/metabolismo , Transporte Proteico , Ratos , Receptores de Superfície Celular/genética , Receptores de Galanina , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Transfecção
4.
Proc Natl Acad Sci U S A ; 97(14): 8075-80, 2000 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-10869418

RESUMO

Recent in vitro and in vivo studies have shown that the chemokine fractalkine is widely expressed in the brain and localized principally to neurons. Central nervous system expression of CX(3)CR1, the only known receptor for fractalkine, has been demonstrated exclusively on microglia and astrocytes. Thus, it has been proposed that fractalkine regulates cellular communication between neurons (that produce fractalkine) and microglia (that express its receptor). Here we show, for the first time, that hippocampal neurons also express CX(3)CR1. Receptor activation by soluble fractalkine induces activation of the protein kinase Akt, a major component of prosurvival signaling pathways, and nuclear translocation of NF-kappaB, a downstream effector of Akt. Fractalkine protects hippocampal neurons from the neurotoxicity induced by the HIV-1 envelope protein gp120(IIIB), an effect blocked by anti-CX(3)CR1 antibodies. Experiments with two different inhibitors of the phosphatidylinositol 3-kinase, a key enzyme in the activation of Akt, and with a phospholipid activator of Akt demonstrate that Akt activation is responsible for the neuroprotective effects of fractalkine. These data show that neuronal CX(3)CR1 receptors mediate the neurotrophic effects of fractalkine, suggesting that fractalkine and its receptor are involved in a complex network of both paracrine and autocrine interactions between neurons and glia.


Assuntos
Quimiocinas CX3C , Quimiocinas CXC/metabolismo , Hipocampo/citologia , Proteínas I-kappa B , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Proteínas Serina-Treonina Quinases , Receptores de Citocinas/metabolismo , Receptores de HIV/metabolismo , Animais , Astrócitos/fisiologia , Receptor 1 de Quimiocina CX3C , Sobrevivência Celular , Quimiocina CX3CL1 , Técnicas de Cultura/métodos , Proteínas de Ligação a DNA/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Ratos , Receptores de Citocinas/genética , Receptores de HIV/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais
5.
Mol Pharmacol ; 57(5): 1064-74, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10779393

RESUMO

The structural basis of Ca(2+) channel inhibition by G proteins has received considerable attention recently, and multiple regions on Ca(2+) channels that interact with G protein subunits have been identified. We have demonstrated previously that a region extending from the N terminus to the I/II loop of the Ca(2+) channel is involved in determining the differences between alpha1B and alpha1E Ca(2+) channels with respect to inhibition by G proteins. Here we explore this region of the channel in greater detail in an effort to further define the regions involved in determining inhibition. Chimeric Ca(2+) channels constructed from alpha1B and alpha1E Ca(2+) channels revealed that the N terminus, the I/II loop, and domain I all play an important role in determining inhibition. We identified a 70-amino acid fragment from domain I that mediates the effects of domain I, and a 50-amino acid fragment from the I/II loop that mediates the effects of the I/II loop. When these regions from alpha1B were exchanged into alpha1E, inhibition identical with that of alpha1B was observed. The differences between alpha1B and alpha1E in the identified region of domain I involve residues that are predicted to be almost exclusively extracellular. Mutations to some of the high-affinity G protein binding regions of alpha1B (alpha interaction domain, CC14, and a C-terminal Galpha binding site) caused relatively little change in inhibition, which suggests that these sites are not necessary individually for G protein-mediated inhibition and may help to explain the small effects of exchanging these regions in isolation.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores Opioides kappa/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Canais de Cálcio/genética , Canais de Cálcio/fisiologia , Eletrofisiologia , Humanos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Receptores Opioides kappa/química , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
6.
Proc Natl Acad Sci U S A ; 95(24): 14500-5, 1998 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-9826729

RESUMO

The HIV-1 envelope protein gp120 induces apoptosis in hippocampal neurons. Because chemokine receptors act as cellular receptors for HIV-1, we examined rat hippocampal neurons for the presence of functional chemokine receptors. Fura-2-based Ca imaging showed that numerous chemokines, including SDF-1alpha, RANTES, and fractalkine, affect neuronal Ca signaling, suggesting that hippocampal neurons possess a wide variety of chemokine receptors. Chemokines also blocked the frequency of spontaneous glutamatergic excitatory postsynaptic currents recorded from these neurons and reduced voltage-dependent Ca currents in the same neurons. Reverse transcription-PCR demonstrated the expression of CCR1, CCR4, CCR5, CCR9/10, CXCR2, CXCR4, and CX3CR1, as well as the chemokine fractalkine in these neurons. Both fractalkine and macrophage-derived chemokine (MDC) produced a time-dependent activation of extracellular response kinases (ERK)-1/2, whereas no activation of c-JUN NH2-terminal protein kinase (JNK)/stress-activated protein kinase, or p38 was evident. Furthermore, these two chemokines, as well as SDF-1alpha, activated the Ca- and cAMP-dependent transcription factor CREB. Several chemokines were able also to block gp120-induced apoptosis of hippocampal neurons, both in the presence and absence of the glial feeder layer. These data suggest that chemokine receptors may directly mediate gp120 neurotoxicity.


Assuntos
Quimiocinas/farmacologia , Regulação da Expressão Gênica , Proteína gp120 do Envelope de HIV/toxicidade , HIV-1 , Hipocampo/fisiologia , Neurônios/fisiologia , Neurotoxinas/toxicidade , Receptores de Quimiocinas/genética , Transdução de Sinais/fisiologia , Animais , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Células Cultivadas , Primers do DNA , Embrião de Mamíferos , Potenciais Evocados/efeitos dos fármacos , Potenciais Evocados/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/citologia , Humanos , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
7.
J Neurosci ; 18(10): 3689-98, 1998 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-9570799

RESUMO

Dihydropyridine-insensitive Ca channels are subject to direct receptor G-protein-mediated inhibition to differing extents. alpha1B channels are much more strongly modulated than alpha1E channels. To understand the structural basis for this difference, we have constructed and expressed various alpha1B and alpha1E chimeric Ca channels and examined their regulation by kappa-opioid receptors. Replacement of the first membrane-spanning domain of alpha1E with the corresponding region of alpha1B resulted in a chimeric Ca channel that was modulated by kappa-opioid receptors to a significantly greater extent than alpha1E. Transfer of the N terminus and I/II loop from alpha1B in addition to domain I resulted in a chimeric channel that was modulated to the same extent as alpha1B. Other regions of the molecule do not appear to contribute significantly to the degree of inhibition obtained, although the C terminus may contribute to facilitation.


Assuntos
Benzenoacetamidas , Canais de Cálcio/química , Ativação do Canal Iônico/fisiologia , Neurônios/química , Receptores Opioides kappa/química , Analgésicos/farmacologia , Bário/farmacocinética , Canais de Cálcio/genética , Linhagem Celular , Eletrofisiologia , D-Penicilina (2,5)-Encefalina , Encefalinas/farmacologia , Proteínas de Ligação ao GTP/fisiologia , Mutagênese/fisiologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Neurônios/citologia , Estrutura Terciária de Proteína , Pirrolidinas/farmacologia , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...