Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; : PHYTO10230362R, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38079350

RESUMO

The genus Coguvirus, a recently established genus in the family Phenuiviridae, includes several species whose members infect both woody and herbaceous hosts, suggesting a broader host range and wider distribution than previously. To gain insights into the epidemiology and biology of coguviruses, a polyvalent reverse transcription-PCR assay using degenerate primers was developed. The specificity of the assay for coguviruses was confirmed by testing citrus and apple plants infected by previously reported coguviruses and/or several unrelated viruses. The expected 236-bp amplicon was obtained from citrus, apple, pear, watermelon, and several species of the family Brassicaceae. Sequencing of the PCR amplicons allowed the identification, for the first time in Italy and/or Europe, of several coguviruses in multiple hosts, confirming the effectiveness of the assay. Moreover, a new virus, tentatively named Brassica oleracea Torzella virus 1 (BoTV1), was detected in several plants of Torzella cabbage. The complete +genome of BoTV1, determined by high-throughput sequencing and 5' rapid amplification of cDNA ends, revealed that it has the typical molecular features of coguviruses and fulfils the current criteria to be classified as a member of a new species, for which the tentative name Coguvirus torzellae is proposed. The same polyvalent assay was also used to investigate and confirm that BoTV1 is transmitted through seeds in black cabbage, thus providing the first evidence on the relevance of this natural transmission mode in the epidemiology of coguviruses. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.

2.
Int J Phytoremediation ; 25(11): 1474-1487, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36606367

RESUMO

The aim of this study was the comparison of two process in pentachlorophenol (PCP: 100 mg L-1) removal by combined process bioaugmentation-adsorption and bioaugmentation-phytoremediation in secondary treated wastewater (STWW). The phytoremediation procedure was conducted by using two plants such as Typha angustifolia and Schoenoplectus acutus, and the bioaugmentation procedure was operated by Pseudomonas putida HM 627618 as a plant growth promoting bacteria (PGPR). The adsorption process was performed by palm date activated carbon. The PCP monitoring was assessed by high performance liquid chromatography (HPLC) and the optical density determination at 600 nm (OD600). The performance of the two processes was observed by the determination of total bacteria, chlorophylls and physical and chemical analysis (COD, pH, conductivity, chloride, and organic carbon). The alfalfa seed germination test was conducted to assess the two operational performance procedures. According to the results obtained from the physical and chemical analysis of the treated STWW, there was no significant differences in the pH and in the EC content of the bioaugmentation-phytoremediation treatment, while a significant increase of the EC content was observed in the bioaugmentation-adsorption to 5.08 mS cm-1. The COD value significantly decreased up to 1320 mg L-1 in bioaugmentation-adsorption treatment (control value 2400 mg L-1) and 98 mg L-1 in bioaugmentation-phytoremediation treatment (control value 98 mg L-1). Microbial biomass monitoring of P. putida shows significant greater in both processes in the order of 9.18 and 7.01 Log CFU mL-1 for bioaugmentation-adsorption and bioaugmentation-phytoremediation, respectively. The chlorophyll content in Typha angustifolia and Schoenoplectus acutus significantly decreased after 144 h with the exception of the chlorophyll a content of Schoenoplectus acutus in which the content increased up to 3.31 mg mL-1. Comparing the performance of these two treatments, it was found according to HPLC analysis that the bioaugmentation-adsorption process was more efficient in removing about 97% of PCP after 48 h, against around 90% of PCP after 72 h for the phytoremediation-bioaugmentation. The alfalfa seeds showed a germination rate after the 5th day of incubation of 100% and 95%, respectively for the PCP-non-contaminated and treated STWW, while for wastewater containing PCP the germination was totally inhibited.


This paper describing sensitive methods of combined bioaugmentation-phytoremediation and bioaugmentation-adsorption for pentachlorophenol (PCP) depletion in wastewater. The novelty is the choice of a macrophyte Typha angustifolia and Schoenoplectus acutus in constructed wetland fixed in clay matrix. The two-selected plants are still used for the elimination of heavy metals but not for pesticide in wastewater. Also, the combined process bioaugmentation-adsorption was not tested in other researches. On the other side, in this study, the phytoremediation technique combined with bacteria positively affected the plants activity in order to promote pollutant remediation. Hence, the Pseudomonas putida HM 627618 in wastewater with the macrophyte presence or date stone adsorbent have a great capacity to reduce this pollutant (PCP) by improving the bioremediation process.


Assuntos
Praguicidas , Águas Residuárias , Biodegradação Ambiental , Adsorção , Clorofila A
3.
Plants (Basel) ; 11(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36501382

RESUMO

To make feasible the crewed missions to the Moon or Mars, space research is focusing on the development of bioregenerative life support systems (BLSS) designed to produce food crops based on in situ resource utilisation (ISRU), allowing to reduce terrestrial input and to recycle organic wastes. In this regard, a major question concerns the suitability of native regoliths for plant growth and how their agronomic performance is affected by additions of organic matter from crew waste. We tested plant growth substrates consisting of MMS-1 (Mars) or LHS-1 (Lunar) simulants mixed with a commercial horse/swine monogastric manure (i.e., an analogue of crew excreta and crop residues) at varying rates (100:0, 90:10, 70:30, 50:50, w/w). Specifically, we measured: (i) lettuce (Lactuca sativa L. cultivar 'Grand Rapids') growth (at 30 days in open gas exchange climate chamber with no fertilisation), plant physiology, and nutrient uptake; as well as (ii) microbial biomass C and N, enzymatic activity, and nutrient bioavailability in the simulant/manure mixtures after plant growth. We discussed mechanisms of different plant yield, architecture, and physiology as a function of chemical, physico-hydraulic, and biological properties of different substrates. A better agronomic performance, in terms of plant growth and optically measured chlorophyll content, nutrient availability, and enzymatic activity, was provided by substrates containing MMS-1, in comparison to LHS-1-based ones, despite a lower volume of readily available water (likely due to the high-frequency low-volume irrigation strategy applied in our experiment and foreseen in space settings). Other physical and chemical properties, along with a different bioavailability of essential nutrients for plants and rhizosphere biota, alkalinity, and release of promptly bioavailable Na from substrates, were identified as the factors leading to the better ranking of MMS-1 in plant above and below-ground mass and physiology. Pure Mars (MMS-1) and Lunar (LHS-1) simulants were able to sustain plant growth even in absence of fertilisation, but the amendment with the monogastric manure significantly improved above- and below-ground plant biomass; moreover, the maximum lettuce leaf production, across combinations of simulants and amendment rates, was obtained in treatments resulting in a finer root system. Increasing rates of monogastric manure stimulated the growth of microbial biomass and enzymatic activities, such as dehydrogenase and alkaline phosphomonoesterase, which, in turn, fostered nutrient bioavailability. Consequently, nutrient uptake and translocation into lettuce leaves were enhanced with manure supply, with positive outcomes in the nutritional value of edible biomass for space crews. The best crop growth response was achieved with the 70:30 simulant/manure mixture due to good availability of nutrients and water compared to low amendment rates, and better-saturated hydraulic conductivity compared to high organic matter application. A 70:30 simulant/manure mixture is also a more sustainable option than a 50:50 mixture for a BLSS developed on ISRU strategy. Matching crop growth performance and (bio)chemical, mineralogical, and physico-hydraulic characteristics of possible plant growth media for space farming allows a better understanding of the processes and dynamics occurring in the experimental substrate/plant system, potentially suitable for an extra-terrestrial BLSS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...