Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 36(21)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38295434

RESUMO

We advertise rare-earth intermetallics with high-symmetry crystal structures and competing interactions as a possible materials platform hosting spin structures with non-trivial topological properties. Focusing on the series of cubicRCu compounds, whereR= Ho, Er, Tm, the bulk properties of these systems display exceptionally rich magnetic phase diagrams hosting an abundance of different phase pockets characteristic of antiferromagnetic order in the presence of delicately balanced interactions. The electrical transport properties exhibit large anomalous contributions suggestive of topologically non-trivial winding in the electronic and magnetic structures. Neutron diffraction identifies spontaneous long-range magnetic order in terms of commensurate and incommensurate variations of(ππ0)antiferromagnetism with the possibility for various multi-kconfigurations. Motivated by general trends in these materials, we discuss the possible existence of topologically non-trivial winding in real and reciprocal space in the class ofRCu compounds including antiferromagnetic skyrmion lattices. Putatively bringing together different limits of non-trivial topological winding in the same material, the combination of properties inRCu systems promises access to advanced functionalities.

2.
Nat Commun ; 14(1): 8239, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086824

RESUMO

Electrons at the border of localization generate exotic states of matter across all classes of strongly correlated electron materials and many other quantum materials with emergent functionality. Heavy electron metals are a model example, in which magnetic interactions arise from the opposing limits of localized and itinerant electrons. This remarkable duality is intimately related to the emergence of a plethora of novel quantum matter states such as unconventional superconductivity, electronic-nematic states, hidden order and most recently topological states of matter such as topological Kondo insulators and Kondo semimetals and putative chiral superconductors. The outstanding challenge is that the archetypal Kondo lattice model that captures the underlying electronic dichotomy is notoriously difficult to solve for real materials. Here we show, using the prototypical strongly-correlated antiferromagnet CeIn3, that a multi-orbital periodic Anderson model embedded with input from ab initio bandstructure calculations can be reduced to a simple Kondo-Heisenberg model, which captures the magnetic interactions quantitatively. We validate this tractable Hamiltonian via high-resolution neutron spectroscopy that reproduces accurately the magnetic soft modes in CeIn3, which are believed to mediate unconventional superconductivity. Our study paves the way for a quantitative understanding of metallic quantum states such as unconventional superconductivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...