Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 256: 121638, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691899

RESUMO

In this study, we investigated the recovery of nitrogen (N) and phosphorus (P) from fresh source-separated urine with a novel electrochemical cell equipped with a magnesium (Mg) anode and carbon-based gas-diffusion cathode. Recovery of P, which exists primarily as phosphate (PO43-) in urine, was achieved through pH-driven precipitation. Maximizing N recovery requires simultaneous approaches to address urea and ammonia (NH3). NH3 recovery was possible through precipitation in struvite with soluble Mg supplied by the anode. Urea was stabilized with electrochemically synthesized hydrogen peroxide (H2O2) from the cathode. H2O2 concentrations and resulting urine pH were directly proportional to the applied current density. Concomitant NH3 and PO43- precipitation as struvite and urea stabilization via H2O2 electrosynthesis was possible at lower current densities, resulting in urine pH under 9.2. Higher current densities resulted in urine pH over 9.2, yielding higher H2O2 concentrations and more consistent stabilization of urea at the expense of NH3 recovery as struvite; PO43- precipitation still occurred but in the form of calcium phosphate and magnesium phosphate solids.


Assuntos
Eletrodos , Peróxido de Hidrogênio , Magnésio , Fósforo , Ureia , Ureia/química , Fósforo/química , Magnésio/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Urina/química , Fosfatos/química , Estruvita/química , Amônia/química , Compostos de Magnésio/química , Nitrogênio/química , Humanos
2.
Water Res ; 257: 121751, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38744062

RESUMO

The human urine metabolome is complex, containing a wide range of organic metabolites that affect treatment of urine collected in resource-oriented sanitation systems. In this study, an advanced oxidation process involving heat-activated peroxydisulphate was used to selectively oxidise organic metabolites in urine over urea and chloride. Initial experiments evaluated optimal conditions (peroxydisulphate dose, temperature, time, pH) for activation of peroxydisulphate in unconcentrated, non-hydrolysed synthetic urine and real urine acidified to pH 3.0. Subsequent experiments determined the fate of 268 endogenous organic metabolites (OMs) and removal of COD from unconcentrated and concentrated real urine (80-90% mass reduced by evaporation). The results revealed >90% activation of 60 mM peroxydisulphate in real unconcentrated urine heated to 90 °C for 1 h, resulting in 43% ΣOMs degradation, 22% COD removal and 56% total organic carbon removal, while >94% of total nitrogen and >97% of urea in real unconcentrated urine were recovered. The mechanism of urea degradation was identified to be chemical hydrolysis to ammonia, with the rate constant for this reaction determined to be 1.9 × 10-6 s-1 at pH 3.0 and 90 °C. Treating concentrated real urine resulted in similar removal of COD, ΣOMs degradation and total nitrogen loss as observed for unconcentrated urine, but with significantly higher chloride oxidation and chemical hydrolysis of urea. Targeted metabolomic analysis revealed that peroxydisulphate treatment degraded 157 organic metabolites in urine, of which 67 metabolites were degraded by >80%. The rate constant for the reaction of sulphate radicals with oxidisable endogenous organic metabolites in urine was estimated to exceed 108 M-1 s-1. These metabolites were preferentially oxidised over chloride and urea in acidified, non-hydrolysed urine treated with peroxydisulphate. Overall, the findings support the development of emerging urine recycling technologies, including alkaline/acid dehydration and reverse osmosis, where the presence of endogenous organic urine metabolites significantly influences treatment parameters such as energy demand and product purity.


Assuntos
Oxirredução , Urina , Humanos , Urina/química , Sulfatos/metabolismo , Sulfatos/química , Sulfatos/urina , Concentração de Íons de Hidrogênio , Ureia/metabolismo , Ureia/urina
3.
Water Res ; 242: 120221, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37390654

RESUMO

In household wastewater, a large proportion of organic micropollutants (OMPs) load is attributed to human urine. OMPs could pose a risk to human and environmental health when urine collected in source-separating sanitation systems is recycled as crop fertiliser. This study evaluated degradation of 75 OMPs in human urine treated by a UV-based advanced oxidation process. Fresh urine and water samples were spiked with a broad range of OMPs and fed into a photoreactor equipped with a UV lamp (185 and 254 nm) that generated free radicals in situ. Degradation rate constant and the energy required to degrade 90% of all the OMPs in both matrices were determined. At a UV dose of 2060 J m-2, average ΣOMP degradation of 99% (±4%) in water and 55% (±36%) in fresh urine was achieved. The energy demand for removal of OMPs in water was <1500 J m-2, but for removal of OMPs in urine at least 10-fold more energy was needed. A combination of photolysis and photo-oxidation can explain the degradation of OMPs during UV treatment. Organic substances (e.g. urea, creatinine) likely inhibited degradation of OMPs in urine by competitively absorbing UV-light and scavenging free radicals. There was no reduction in the nitrogen content of urine during treatment. In summary, UV treatment can reduce the load of OMPs to urine recycling sanitation systems.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Água , Poluentes Químicos da Água/análise , Raios Ultravioleta , Oxirredução
4.
Sci Total Environ ; 892: 164517, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37268124

RESUMO

Human urine contributes up to 50 % of the phosphorus load in domestic wastewater. Decentralized sanitation systems that separately collect urine provide an opportunity to recover this phosphorus. In this study, we leveraged the unique and complex chemistry of urine in favor of recovering phosphorus as vivianite. We found that the type of urine affected the yield and purity of vivianite, but the kind of iron salt used, and reaction temperature, did not affect the yield and purity. Ultimately, it was the urine pH that affected the solubility of vivianite and other co-precipitates, with the highest yield (93 ± 2 %) and purity (79 ± 3 %) of vivianite obtained at pH 6.0. Yield and purity of vivianite were both maximized when Fe:P molar ratio was >1.5:1, but <2.2:1. This molar ratio provided sufficient iron to react with all available phosphorus, while exerting a competitive effect that suppressed the precipitation of other precipitates. Vivianite produced from fresh urine was less pure than vivianite produced from synthetic urine, because of the presence of organics in real urine, but washing the solids with deionized water improved the purity by 15.5 % at pH 6.0. Overall, this novel work adds to the growing body of literature on phosphorus recovery as vivianite from wastewater.


Assuntos
Fósforo , Águas Residuárias , Humanos , Eliminação de Resíduos Líquidos , Fosfatos/análise , Compostos Ferrosos , Ferro , Esgotos
5.
Sci Total Environ ; 879: 163053, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36966823

RESUMO

To feed the world without transgressing regional and planetary boundaries for nitrogen and phosphorus, one promising strategy is to return nutrients present in domestic wastewater to farmland. This study tested a novel approach for producing bio-based solid fertilisers by concentrating source-separated human urine through acidification and dehydration. Thermodynamic simulations and laboratory experiments were conducted to evaluate changes in chemistry of real fresh urine dosed and dehydrated using two different organic and inorganic acids. The results showed that an acid dose of 1.36 g H2SO4 L-1, 2.86 g H3PO4 L-1, 2.53 g C2H2O4·2H2O L-1 and 5.9 g C6H8O7 L-1 was sufficient to maintain pH ≤3.0 and prevent enzymatic ureolysis in urine during dehydration. Unlike alkaline dehydration using Ca(OH)2 where calcite formation limits the nutrient content of fertiliser products (e.g. <15 % nitrogen), there is greater value proposition in acid dehydration of urine, as the products contain 17.9-21.2 % nitrogen, 1.1-3.6 % phosphorus, 4.2-5.6 % potassium and 15.4-19.4 % carbon. While the treatment recovered all phosphorus, recovery of nitrogen in the solid products was 74 % (±4 %). Follow-up experiments revealed that hydrolytic breakdown of urea to ammonia, chemically or enzymatically, was not the reason for the nitrogen losses. Instead, we posit that urea breaks down to ammonium cyanate, which then reacts with amino and sulfhydryl groups of amino acids excreted in urine. Overall, the organic acids evaluated in this study are promising for decentralised urine treatment, as they are naturally present in food and therefore already excreted in human urine.


Assuntos
Desidratação , Nitrogênio , Humanos , Nitrogênio/análise , Águas Residuárias , Ureia/química , Fósforo/análise , Fertilizantes/análise , Urina/química
7.
Sci Total Environ ; 794: 148660, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34218147

RESUMO

The ongoing Toilet Revolution in China offers an opportunity to improve sanitation in rural areas by introducing new approaches, such as urine source separation, that can contribute to achieving SDG6. However, few studies have systematically assessed the social acceptability of managing human excreta collected in new sanitation systems. Therefore, in this study we performed face-to-face interviews with 414 local residents from 13 villages across three provinces in western China, to analyze the current situation and attitudes to possible changes in the rural sanitation service chain. We found that the sanitation chain was predominantly pit latrine-based, with 86.2% of households surveyed collecting their excreta in a simple pit, 82% manually emptying their pits, and 80.2% reusing excreta in agriculture without adequate pre-treatment. A majority (72%) of the households had a generally positive attitude to production of human excreta-derived fertilizer, but only 24% agreed that urine and feces should be collected separately. Multivariate logistic regression indicated that three factors (level of education, number of permanent household residents, perceived social acceptability) significantly influenced respondents' attitudes to reuse of excreta, although only perceived social acceptability had a high strength of association. Overall, our survey revealed that rural households often misuse toilet systems, fail to comply with government-specified sanitation guidelines, have low awareness of alternative solutions, and are over-reliant on the government to fix problems in the service chain. Thus while new sanitation technologies should be developed and implemented, information campaigns that encourage rural households to manage their excreta safely are also important.


Assuntos
Aparelho Sanitário , Saneamento , Atitude , China , Humanos , População Rural , Banheiros
9.
Data Brief ; 35: 106794, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33604424

RESUMO

We present here a data set generated from a multinational survey on opinions of university community members on the prospect of consuming food grown with human urine as fertiliser and about their urine recycling perceptions in general. The data set comprises answers from 3,763 university community members (students, faculty/researchers, and staff) from 20 universities in 16 countries and includes demographic variables (age bracket, gender, type of settlement of origin, academic discipline, and role in the university). Questions were designed based on Ajzen's theory of planned behaviour to elicit information about three components of behavioural intention-attitudes, subjective norms, and perceived behavioural control. Survey questions covered perceived risks and benefits (attitudes), perceptions of colleagues (injunctive social norm) and willingness to consume food grown with cow urine/faeces (descriptive social norm), and willingness to pay a price premium for food grown with human urine as fertiliser (perceived behavioural control). We also included a question about acceptable urine recycling and disposal options and assessed general environmental outlook via the 15-item revised New Ecological Paradigm (NEP) scale. Data were collected through a standardised survey instrument translated into the relevant languages and then administered via an online form. Invitations to the survey were sent by email to university mailing lists or to a systematic sample of the university directory. Only a few studies on attitudes towards using human urine as fertiliser have been conducted previously. The data described here, which we analysed in "Willingness among food consumers at universities to recycle human urine as crop fertiliser: Evidence from a multinational survey" [1], may be used to further understand potential barriers to acceptance of new sanitation systems based on wastewater source separation and urine recycling and can help inform the design of future sociological studies.

10.
Sci Total Environ ; 765: 144438, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33418332

RESUMO

Source-separating sanitation systems offer the possibility of recycling nutrients present in wastewater as crop fertilisers. Thereby, they can reduce agriculture's impacts on global sources, sinks, and cycles for nitrogen and phosphorous, as well as their associated environmental costs. However, it has been broadly assumed that people would be reluctant to perform the new sanitation behaviours that are necessary for implementing such systems in practice. Yet, few studies have tried to systematically gather evidence in support of this assumption. To address this gap, we surveyed 3763 people at 20 universities in 16 countries using a standardised questionnaire. We identified and systematically assessed cross-cultural and country-level explanatory factors that were strongly associated with people's willingness to consume food grown using human urine as fertiliser. Overall, 68% of the respondents favoured recycling human urine, 59% stated a willingness to eat urine-fertilised food, and only 11% believed that urine posed health risks that could not be mitigated by treatment. Most people did not expect to pay less for urine-fertilised food, but only 15% were willing to pay a price premium. Consumer perceptions were found to differ greatly by country and the strongest predictive factors for acceptance overall were cognitive factors (perceptions of risks and benefits) and social norms. Increasing awareness and building trust among consumers about the effectiveness of new sanitation systems via cognitive and normative messaging can help increase acceptance. Based on our findings, we believe that in many countries, acceptance by food consumers will not be the major social barrier to closing the loop on human urine. That a potential market exists for urine-fertilised food, however, needs to be communicated to other stakeholders in the sanitation service chain.


Assuntos
Fertilizantes , Reciclagem , Comportamento do Consumidor , Alimentos , Humanos , Inquéritos e Questionários , Águas Residuárias
11.
Sci Total Environ ; 733: 139313, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32446074

RESUMO

For sanitation systems aiming at recycling nutrients, separately collecting urine at source is desirable as urine contains most of the nutrients in wastewater. However, reducing the volume of the collected urine and recovering majority of its nutrients is necessary, as this improves the transportability and the end-application of urine-based fertilisers. In this study, we present an innovative method, alkaline dehydration, for treating fresh human urine into a nutrient-rich dry solid. Our aim was to investigate whether fresh urine (pH < 7) added to five different alkaline media (pH > 11) could be dehydrated at elevated temperatures (50 and 60 °C) with minimal loss of urea, urine's principal nitrogen compound. We found that it was possible to concentrate urine 48 times, yielding dry end-products with high fertiliser value: approximately, 10% N, 1% P, and 4% K. We monitored the physicochemical properties and the composition of various dehydration media to provide useful insights into their suitability for dehydrating urine. We demonstrated that it is possible to recover >90% nitrogen when treating fresh urine by alkaline dehydration by inhibiting the enzymatic hydrolysis of urea at elevated pH and minimising the chemical hydrolysis of urea with high urine dehydration rates.


Assuntos
Desidratação , Fertilizantes/análise , Humanos , Nitrogênio/análise , Temperatura , Urina/química , Águas Residuárias
12.
Water Res ; 144: 474-481, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30075443

RESUMO

Over four billion people are discharging untreated human excreta into the environment without any prior treatment, causing eutrophication and spreading disease. The most nutrient rich fraction is the urine. Urine can be collected separately and dehydrated in an alkaline bed producing a nutrient rich fertiliser. However, faecal cross-contamination during the collection risks to introduce pathogens to the urine. The objective of this hygiene assessment was to study the inactivation of five microorganisms (Ascaris suum, Enterococcus faecalis, bacteriophages MS2 and ΦX 174 and Salmonella spp) in alkaline dehydrated urine. Fresh human urine was dehydrated in wood ash at 42 °C until the pH decreased to ≤10.5, at which point the saturated ash was inoculated with faeces containing the microorganisms and left open to the air (mimicking stockpiling of the end product) at temperatures of 20 and 42 °C. The bacteria and bacteriophages were inactivated to below the detection limit (100 cfu ml-1 for bacteria; 10 pfu mL-1 for bacteriophages) within four days storage at 20 °C. A. suum inactivation data was fitted to a non-linear regression model, which estimated a required 325 days of storage at 20 °C and 9.2 days at 42 °C to reach a 3 log10 reduction. However, the urine dehydration in itself achieved a concentration <1 A. suum per 4 g of dehydrated medium which fulfil the WHO guidelines for unrestricted use.


Assuntos
Dessecação/métodos , Desinfecção/métodos , Urina/química , Animais , Ascaris suum , Bacteriófago phi X 174 , Enterococcus faecalis , Fezes/microbiologia , Fertilizantes , Humanos , Concentração de Íons de Hidrogênio , Levivirus , Salmonella , Temperatura , Urina/microbiologia , Urina/parasitologia , Urina/virologia
13.
Water Res ; 143: 527-538, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30007256

RESUMO

Sanitation systems based on source separation and valorisation of human urine can improve the environmental sustainability of wastewater management. Yet, the social acceptability of such new, resource-oriented sanitation practices have not been assessed systematically. We attempt to address this research gap by reporting the findings of a survey conducted at a South Indian university that evaluated support for urine recycling among 1252 Indian consumers. We place our findings in the context of the Theory of Planned Behaviour, quantify consumer attitude to urine recycling through an exploratory numerical approach, and identify explanatory factors that shape consumer beliefs and perceptions. Overall, a moderately positive attitude was observed: 68% stated human urine should not be disposed but recycled, 55% considered it as fertiliser, but only 44% would consume food grown using it. While 65% believed using urine as crop fertiliser could pose a health risk, majority (80%) believed it could be treated so as to not pose a risk. The respondents' 'willingness to consume' urine-fertilised food was found to be strongly influenced by their willingness to pay. Consumer environmental attitudes, as evaluated using the New Ecological Paradigm scale, did not influence their attitude towards urine recycling behaviour. We thus believe that simply appealing to people's environmental sensitivities is not enough for introducing environmentally-friendly technologies like urine recycling, but that more targeted marketing messages are needed. We find sufficient support among our surveyed consumers for urine recycling but highlight that further research is needed to identify what information and agency will help translate positive attitudes into action and behaviour.


Assuntos
Fertilizantes , Alimentos , Opinião Pública , Reciclagem , Eliminação de Resíduos Líquidos/métodos , Adolescente , Adulto , Atitude , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Saneamento/métodos , Inquéritos e Questionários , Universidades , Urina , Águas Residuárias , Adulto Jovem
14.
Water Res ; 142: 325-336, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29890480

RESUMO

In urine-separating sanitation systems, bacterial urease enzymes can hydrolyse urea to ammonia during the pipe transport and storage of urine. The present study investigated whether it was possible to reduce the urine volume without losing the nitrogen as ammonia. A method for stabilising the urine prior to dehydration was developed. Briefly, fresh human urine was stabilised by passage through an anion-exchanger, added to an alkaline media (wood ash or alkalised biochar), and dehydrated. Urine dehydration was investigated at three temperatures: 40, 45 and 50 °C. The influence of various factors affecting the dehydration process was modelled and the rate of urine dehydration was optimised. Results indicated that 75% (v/v) of the urine has to pass through the ion-exchanger for alkaline stabilisation of urine to occur. At all investigated temperatures, the dehydrator accomplished >90% volume reduction of ion-exchanged urine, > 70% N retention and 100% recovery of P and K. To realise high degree of nutrient valorisation, this study proposes combining source-separation of human urine with alkaline dehydration.


Assuntos
Nitrogênio/química , Fósforo/química , Potássio/química , Urina/química , Eliminação de Resíduos Líquidos/métodos , Adulto , Idoso , Amônia/química , Dessecação , Feminino , Humanos , Hidrólise , Troca Iônica , Masculino , Pessoa de Meia-Idade , Temperatura , Ureia/química , Adulto Jovem
15.
Sci Total Environ ; 581-582: 885-896, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28089535

RESUMO

Relatively little research has been conducted to date on farmer attitudes towards the use of fertilisers from resource-oriented sanitation systems. This study employed a psycho-sociological approach to identify factors that encourage, or discourage, negative and positive attitudes to human waste recycling among farmers in southern India. A survey involving face-to-face interviews was performed with 120 randomly sampled farmers, taking into account the following factors: gender, age, religion, caste, type of farming, farm size, annual income and farming history. Variations in variables (χ2 and ANOVA) were considered statistically significant if p-value was <0.05. When asked whether they thought human wastes could be used as fertiliser, of the farmers who expressed an opinion 59% were positive to re-use of urine and 46% to re-use of human faeces. Farmers in Vellore appeared to display what we term, a 'not-in-my-circle' syndrome, as they would prefer their neighbours to use human urine rather than their friends, family and colleagues. The main factors that motivated farmers to respond positively to re-use of urine were improved soil quality and potential cost savings from reduced use of chemical fertilisers. Fear of crop die-off, fear of being ridiculed and uncertainty over consumer marketplace behaviour were significant factors among farmers with a negative attitude. Furthermore, the survey responses indicated that besides socio-demographic factors, other factors such as 'trust' might have to be taken into consideration when planning and implementing nutrient recycling programmes. Early dialogue, continuous interaction and integration of user stakeholders (producers and consumers) in conceptualisation, design and implementation of nutrient recycling programmes are essential to ensure future success and wider adoption.


Assuntos
Atitude , Fazendeiros , Fertilizantes , Saneamento , Adulto , Agricultura , Feminino , Humanos , Índia , Masculino , Pessoa de Meia-Idade , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...