Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 20(2): 316-321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37610145

RESUMO

Soils are a precious resource consistently placed under several threats and urgently in need of protection within a regulatory framework at the European level. Soils are central to the provision of environmental services as well as human existence on earth. The need to protect soil has been identified by several recent European strategies and fortunately, a specific European regulation for soil protection is on the way-the European Soil Monitoring Law (formerly: Soil Health Law). However, efforts need to ensure that the upcoming Soil Monitoring Law closes gaps between existing regulations for chemicals and acknowledges current European strategies for environmental protection and sustainability. This brief communication started from a fruitful discussion among SETAC Global Soils Interest Group members on a recent public consultation on the newly proposed Soil Monitoring Law of the European Commission and highlights critical points focusing on the chemical pollution of soils. We emphasize urgent needs such as the essential definition of a "healthy state" of soils; the implementation of a suitable set of indicators and quality standards for the description of physical, chemical, and biological states of soils; the enforcement of the "polluter-pays" principle; and the establishment of a Europe-wide monitoring program. Results from monitoring need to be fed back into regulatory frameworks, including the regulation of chemicals. Guidance documents for the risk assessment of chemicals are outdated and need to be updated. Finally, actions need to be taken to foster healthy soils, stop biodiversity decline, and ensure the functioning of ecosystem services for future generations. Integr Environ Assess Manag 2024;20:316-321. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecossistema , Solo , Humanos , Biodiversidade , Poluição Ambiental , Ecotoxicologia , Medição de Risco , Monitoramento Ambiental/métodos
2.
Sci Total Environ ; 408(16): 3193-9, 2010 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-20471667

RESUMO

The presence of energetic materials (used as explosives and propellants) at contaminated sites is a growing international issue, particularly with respect to military base closures and demilitarization policies. Improved understanding of the ecotoxicological effects of these materials is needed in order to accurately assess the potential exposure risks and impacts on the environment and its ecosystems. We studied the toxicity of the nitroaromatic energetic material 2,4-dinitrotoluene (2,4-DNT) on alfalfa (Medicago sativa L.), barnyard grass (Echinochloa crusgalli L. Beauv.), and perennial ryegrass (Lolium perenne L.) using four natural soils varying in properties (organic matter, clay content, and pH) that were hypothesized to affect chemical bioavailability and toxicity. Amended soils were subjected to natural light conditions, and wetting and drying cycles in a greenhouse for 13 weeks prior to toxicity testing to approximate field exposure conditions in terms of bioavailability, transformation, and degradation of 2,4-DNT. Definitive toxicity tests were performed according to standard protocols. The median effective concentration (EC(50)) values for shoot dry mass ranged from 8 to 229 mg kg(-1), depending on the plant species and soil type. Data indicated that 2,4-DNT was most toxic in the Sassafras (SSL) and Teller (TSL) sandy loam soils, with EC(50) values for shoot dry mass ranging between 8 to 44 mg kg(-1), and least toxic in the Webster clay loam soil, with EC(50) values for shoot dry mass ranging between 40 to 229 mg kg(-1). The toxicity of 2,4-DNT for each of the plant species was significantly (p < or = 0.05) and inversely correlated with the soil organic matter content. Toxicity benchmark values determined in the present studies for 2,4-DNT weathered-and-aged in SSL or TSL soils will contribute to development of an Ecological Soil Screening Level for terrestrial plants that can be used for ecological risk assessment at contaminated sites.


Assuntos
Dinitrobenzenos/toxicidade , Poaceae/efeitos dos fármacos , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...