Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208548

RESUMO

Computer vision, biomedical image processing and deep learning are related fields with a tremendous impact on the interpretation of medical images today. Among biomedical image sensing modalities, ultrasound (US) is one of the most widely used in practice, since it is noninvasive, accessible, and cheap. Its main drawback, compared to other imaging modalities, like computed tomography (CT) or magnetic resonance imaging (MRI), consists of the increased dependence on the human operator. One important step toward reducing this dependence is the implementation of a computer-aided diagnosis (CAD) system for US imaging. The aim of the paper is to examine the application of contrast enhanced ultrasound imaging (CEUS) to the problem of automated focal liver lesion (FLL) diagnosis using deep neural networks (DNN). Custom DNN designs are compared with state-of-the-art architectures, either pre-trained or trained from scratch. Our work improves on and broadens previous work in the field in several aspects, e.g., a novel leave-one-patient-out evaluation procedure, which further enabled us to formulate a hard-voting classification scheme. We show the effectiveness of our models, i.e., 88% accuracy reported against a higher number of liver lesion types: hepatocellular carcinomas (HCC), hypervascular metastases (HYPERM), hypovascular metastases (HYPOM), hemangiomas (HEM), and focal nodular hyperplasia (FNH).


Assuntos
Carcinoma Hepatocelular , Hiperplasia Nodular Focal do Fígado , Neoplasias Hepáticas , Meios de Contraste , Humanos , Fígado/diagnóstico por imagem , Imageamento por Ressonância Magnética , Ultrassonografia
2.
Sensors (Basel) ; 20(11)2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517141

RESUMO

Gesture recognition is an intensively researched area for several reasons. One of the most important reasons is because of this technology's numerous application in various domains (e.g., robotics, games, medicine, automotive, etc.) Additionally, the introduction of three-dimensional (3D) image acquisition techniques (e.g., stereovision, projected-light, time-of-flight, etc.) overcomes the limitations of traditional two-dimensional (2D) approaches. Combined with the larger availability of 3D sensors (e.g., Microsoft Kinect, Intel RealSense, photonic mixer device (PMD), CamCube, etc.), recent interest in this domain has sparked. Moreover, in many computer vision tasks, the traditional statistic top approaches were outperformed by deep neural network-based solutions. In view of these considerations, we proposed a deep neural network solution by employing PointNet architecture for the problem of hand gesture recognition using depth data produced by a time of flight (ToF) sensor. We created a custom hand gesture dataset, then proposed a multistage hand segmentation by designing filtering, clustering, and finding the hand in the volume of interest and hand-forearm segmentation. For comparison purpose, two equivalent datasets were tested: a 3D point cloud dataset and a 2D image dataset, both obtained from the same stream. Besides the advantages of the 3D technology, the accuracy of the 3D method using PointNet is proven to outperform the 2D method in all circumstances, even the 2D method that employs a deep neural network.


Assuntos
Gestos , Reconhecimento Automatizado de Padrão , Algoritmos , Mãos , Humanos , Redes Neurais de Computação , Reconhecimento Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...