Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 17(12): 1093-6, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27038073

RESUMO

The application of commonly used force spectroscopy in biological systems is often limited by the need for an invasive tether connecting the molecules of interest to a bead or cantilever tip. Here we present a DNA origami-based prototype in a comparative binding assay. It has the advantage of in situ readout without any physical connection to the macroscopic world. The seesaw-like structure has a lever that is able to move freely relative to its base. Binding partners on each side force the structure into discrete and distinguishable conformations. Model experiments with competing DNA hybridisation reactions yielded a drastic shift towards the conformation with the stronger binding interaction. With reference DNA duplexes of tuneable length on one side, this device can be used to measure ligand interactions in comparative assays.


Assuntos
DNA/química , Nanoestruturas/química , Ligação Competitiva , DNA/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Microscopia Eletrônica de Transmissão , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico
2.
Acc Chem Res ; 47(6): 1691-9, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24720250

RESUMO

CONSPECTUS: Not only can triangulated wireframe network and tensegrity design be found in architecture, but it is also essential for the stability and organization of biological matter. Whether the scaffolding material is metal as in Buckminster Fuller's geodesic domes and Kenneth Snelson's floating compression sculptures or proteins like actin or spectrin making up the cytoskeleton of biological cells, wireframe and tensegrity construction can provide great stability while minimizing the material required. Given the mechanical properties of single- and double-stranded DNA, it is not surprising to find many variants of wireframe and tensegrity constructions in the emerging field of DNA nanotechnology, in which structures of almost arbitrary shape can be built with nanometer precision. The success of DNA self-assembly relies on the well-controlled hybridization of complementary DNA strands. Consequently, understanding the fundamental physical properties of these molecules is essential. Many experiments have shown that double-stranded DNA (in its most commonly occurring helical form, the B-form) behaves in a first approximation like a relatively stiff cylindrical beam with a persistence length of many times the length of its building blocks, the base pairs. However, it is harder to assign a persistence length to single-stranded DNA. Here, normally the Kuhn length is given, a measure that describes the length of individual rigid segments in a freely jointed chain. This length is on the order of a few nucleotides. Two immediate and important consequences arise from this high flexibility: single-stranded DNA is almost always present in a coiled conformation, and it behaves, just like all flexible polymers in solution, as an entropic spring. In this Account, we review the relation between the mechanical properties of DNA and design considerations for wireframe and tensegrity structures built from DNA. We illustrate various aspects of the successful evolution of DNA nanotechnology starting with the construction of four-way junctions and then allude to simple geometric objects such as the wireframe cube presented by Nadrian Seeman along with a variety of triangulated wireframe constructions. We examine DNA tensegrity triangles that self-assemble into crystals with sizes of several hundred micrometers as well as prestressed DNA origami tensegrity architecture, which uses single-stranded DNA with its entropic spring behavior as tension bearing components to organize stiff multihelix bundles in three dimensions. Finally, we discuss emerging applications of the aforementioned design principles in diverse fields such as diagnostics, drug delivery, or crystallography. Despite great advances in related research fields like protein and RNA engineering, DNA self-assembly is currently the most accessible technique to organize matter on the nanoscale, and we expect many more exciting applications to emerge.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Pareamento de Bases , Técnicas Biossensoriais , Cristalização , Entropia , Inativação Gênica , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...