Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39151116

RESUMO

Phosphorylated amino acids are involved in many cell regulatory networks; proteins containing these post-translational modifications are widely studied both experimentally and computationally. Simulations are used to investigate a wide range of structural and dynamic properties of biomolecules, such as ligand binding, enzyme-reaction mechanisms, and protein folding. However, the development of force field parameters for the simulation of proteins containing phosphorylated amino acids using the Amber program has not kept pace with the development of parameters for standard amino acids, and it is challenging to model these modified amino acids with accuracy comparable to proteins containing only standard amino acids. In particular, the popular ff14SB and ff19SB models do not contain parameters for phosphorylated amino acids. Here, the dihedral parameters for the side chains of the most common phosphorylated amino acids are trained against reference data from QM calculations adopting the ff14SB approach, followed by validation against experimental data. Library files and corresponding parameter files are provided, with versions that are compatible with both ff14SB and ff19SB.

2.
J Phys Chem B ; 128(33): 7921-7933, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39110091

RESUMO

The role of ribonucleic acid (RNA) in biology continues to grow, but insight into important aspects of RNA behavior is lacking, such as dynamic structural ensembles in different environments, how flexibility is coupled to function, and how function might be modulated by small molecule binding. In the case of proteins, much progress in these areas has been made by complementing experiments with atomistic simulations, but RNA simulation methods and force fields are less mature. It remains challenging to generate stable RNA simulations, even for small systems where well-defined, thermostable structures have been established by experiments. Many different aspects of RNA energetics have been adjusted in force fields, seeking improvements that are transferable across a variety of RNA structural motifs. In this work, the role of weak CH···O interactions is explored, which are ubiquitous in RNA structure but have received less attention in RNA force field development. By comparing data extracted from high-resolution RNA crystal structures to energy profiles from quantum mechanics and force field calculations, it is shown that CH···O interactions are overly repulsive in the widely used Amber RNA force fields. A simple, targeted adjustment of CH···O repulsion that leaves the remainder of the force field unchanged was developed. Then, the standard and modified force fields were tested using molecular dynamics (MD) simulations with explicit water and salt, amassing over 300 µs of data for multiple RNA systems containing important features such as the presence of loops, base stacking interactions as well as canonical and noncanonical base pairing. In this work and others, standard force fields lead to reproducible unfolding of the NMR-based structures. Including a targeted CH···O adjustment in an otherwise identical protocol dramatically improves the outcome, leading to stable simulations for all RNA systems tested.


Assuntos
Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA , Termodinâmica , RNA/química , Estabilidade de RNA , Ligação de Hidrogênio
3.
J Chem Inf Model ; 64(15): 6092-6104, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002142

RESUMO

Ribonucleic acid (RNA) molecules can adopt a variety of secondary and tertiary structures in solution, with stem-loops being one of the more common motifs. Here, we present a systematic analysis of 15 RNA stem-loop sequences simulated with molecular dynamics simulations in an implicit solvent environment. Analysis of RNA cluster ensembles showed that the stem-loop structures can generally adopt the A-form RNA in the stem region. Loop structures are more sensitive, and experimental structures could only be reproduced with modification of CH···O interactions in the force field, combined with an implicit solvent nonpolar correction to better model base stacking interactions. Accurately modeling RNA with current atomistic physics-based models remains challenging, but the RNA systems studied herein may provide a useful benchmark set for testing other RNA modeling methods in the future.


Assuntos
Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , RNA , Solventes , Solventes/química , RNA/química
4.
Viruses ; 16(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39066230

RESUMO

One of the entry mechanisms of the SARS-CoV-2 coronavirus into host cells involves endosomal acidification. It has been proposed that under acidic conditions, the fusion peptide proximal region (FPPR) of the SARS-CoV-2 spike glycoprotein acts as a pH-dependent switch, modulating immune response accessibility by influencing the positioning of the receptor binding domain (RBD). This would provide indirect coupling of RBD opening to the environmental pH. Here, we explored this possible pH-dependent conformational equilibrium of the FPPR within the SARS-CoV-2 spike glycoprotein. We analyzed hundreds of experimentally determined spike structures from the Protein Data Bank and carried out pH-replica exchange molecular dynamics to explore the extent to which the FPPR conformation depends on pH and the positioning of the RBD. A meta-analysis of experimental structures identified alternate conformations of the FPPR among structures in which this flexible regions was resolved. However, the results did not support a correlation between the FPPR conformation and either RBD position or the reported pH of the cryo-EM experiment. We calculated pKa values for titratable side chains in the FPPR region using PDB structures, but these pKa values showed large differences between alternate PDB structures that otherwise adopt the same FPPR conformation type. This hampers the comparison of pKa values in different FPPR conformations to rationalize a pH-dependent conformational change. We supplemented these PDB-based analyses with all-atom simulations and used constant-pH replica exchange molecular dynamics to estimate pKa values in the context of flexibility and explicit water. The resulting titration curves show good reproducibility between simulations, but they also suggest that the titration curves of the different FPPR conformations are the same within the error bars. In summary, we were unable to find evidence supporting the previously published hypothesis of an FPPR pH-dependent equilibrium: neither from existing experimental data nor from constant-pH MD simulations. The study underscores the complexity of the spike system and opens avenues for further exploration into the interplay between pH and SARS-CoV-2 viral entry mechanisms.


Assuntos
Simulação de Dinâmica Molecular , Conformação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Concentração de Íons de Hidrogênio , SARS-CoV-2/química , Humanos , COVID-19/virologia , Internalização do Vírus , Ligação Proteica , Domínios Proteicos
5.
J Chem Theory Comput ; 20(13): 5583-5597, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38905589

RESUMO

One of the key challenges of k-means clustering is the seed selection or the initial centroid estimation since the clustering result depends heavily on this choice. Alternatives such as k-means++ have mitigated this limitation by estimating the centroids using an empirical probability distribution. However, with high-dimensional and complex data sets such as those obtained from molecular simulation, k-means++ fails to partition the data in an optimal manner. Furthermore, stochastic elements in all flavors of k-means++ will lead to a lack of reproducibility. K-means N-Ary Natural Initiation (NANI) is presented as an alternative to tackle this challenge by using efficient n-ary comparisons to both identify high-density regions in the data and select a diverse set of initial conformations. Centroids generated from NANI are not only representative of the data and different from one another, helping k-means to partition the data accurately, but also deterministic, providing consistent cluster populations across replicates. From peptide and protein folding molecular simulations, NANI was able to create compact and well-separated clusters as well as accurately find the metastable states that agree with the literature. NANI can cluster diverse data sets and be used as a standalone tool or as part of our MDANCE clustering package.

6.
J Chem Theory Comput ; 20(11): 4456-4468, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38780181

RESUMO

In this paper, we present differentiable solvent-accessible surface area (dSASA), an exact geometric method to calculate SASA analytically along with atomic derivatives on GPUs. The atoms in a molecule are first assigned to tetrahedra in groups of four atoms by Delaunay tetrahedralization adapted for efficient GPU implementation, and the SASA values for atoms and molecules are calculated based on the tetrahedralization information and inclusion-exclusion method. The SASA values from the numerical icosahedral-based method can be reproduced with >98% accuracy for both proteins and RNAs. Having been implemented on GPUs and incorporated into AMBER, we can apply dSASA to implicit solvent molecular dynamics simulations with the inclusion of this nonpolar term. The current GPU version of GB/SA simulations has been accelerated up to nearly 20-fold compared to the CPU version, outperforming LCPO, a commonly used, fast algorithm for calculating SASA, as the system size increases. While we focus on the accuracy of the SASA calculations for proteins and nucleic acids, we also demonstrate stable GB/SA MD mini-protein simulations.

7.
Biophys J ; 123(17): 2902-2909, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-38751115

RESUMO

The precise prediction of major histocompatibility complex (MHC)-peptide complex structures is pivotal for understanding cellular immune responses and advancing vaccine design. In this study, we enhanced AlphaFold's capabilities by fine-tuning it with a specialized dataset consisting of exclusively high-resolution class I MHC-peptide crystal structures. This tailored approach aimed to address the generalist nature of AlphaFold's original training, which, while broad-ranging, lacked the granularity necessary for the high-precision demands of class I MHC-peptide interaction prediction. A comparative analysis was conducted against the homology-modeling-based method Pandora as well as the AlphaFold multimer model. Our results demonstrate that our fine-tuned model outperforms others in terms of root-mean-square deviation (median value for Cα atoms for peptides is 0.66 Å) and also provides enhanced predicted local distance difference test scores, offering a more reliable assessment of the predicted structures. These advances have substantial implications for computational immunology, potentially accelerating the development of novel therapeutics and vaccines by providing a more precise computational lens through which to view MHC-peptide interactions.


Assuntos
Modelos Moleculares , Peptídeos , Peptídeos/química , Peptídeos/metabolismo , Complexo Principal de Histocompatibilidade , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Ligação Proteica
8.
bioRxiv ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38496504

RESUMO

One of the key challenges of k-means clustering is the seed selection or the initial centroid estimation since the clustering result depends heavily on this choice. Alternatives such as k-means++ have mitigated this limitation by estimating the centroids using an empirical probability distribution. However, with high-dimensional and complex datasets such as those obtained from molecular simulation, k-means++ fails to partition the data in an optimal manner. Furthermore, stochastic elements in all flavors of k-means++ will lead to a lack of reproducibility. K-means N-Ary Natural Initiation (NANI) is presented as an alternative to tackle this challenge by using efficient n-ary comparisons to both identify high-density regions in the data and select a diverse set of initial conformations. Centroids generated from NANI are not only representative of the data and different from one another, helping k-means to partition the data accurately, but also deterministic, providing consistent cluster populations across replicates. From peptide and protein folding molecular simulations, NANI was able to create compact and well-separated clusters as well as accurately find the metastable states that agree with the literature. NANI can cluster diverse datasets and be used as a standalone tool or as part of our MDANCE clustering package.

9.
ArXiv ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38313200

RESUMO

In this paper, we present dSASA (differentiable SASA), an exact geometric method to calculate solvent accessible surface area (SASA) analytically along with atomic derivatives on GPUs. The atoms in a molecule are first assigned to tetrahedra in groups of four atoms by Delaunay tetrahedrization adapted for efficient GPU implementation and the SASA values for atoms and molecules are calculated based on the tetrahedrization information and inclusion-exclusion method. The SASA values from the numerical icosahedral-based method can be reproduced with more than 98% accuracy for both proteins and RNAs. Having been implemented on GPUs and incorporated into the software Amber, we can apply dSASA to implicit solvent molecular dynamics simulations with inclusion of this nonpolar term. The current GPU version of GB/SA simulations has been accelerated up to nearly 20-fold compared to the CPU version, outperforming LCPO, a commonly used, fast algorithm for calculating SASA, as the system size increases. While we focus on the accuracy of the SASA calculations for proteins and nucleic acids, we also demonstrate stable GB/SA MD mini-protein simulations.

10.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38077000

RESUMO

The precise prediction of Major Histocompatibility Complex (MHC)-peptide complex structures is pivotal for understanding cellular immune responses and advancing vaccine design. In this study, we enhanced AlphaFold's capabilities by fine-tuning it with a specialized dataset comprised by exclusively high-resolution MHC-peptide crystal structures. This tailored approach aimed to address the generalist nature of AlphaFold's original training, which, while broad-ranging, lacked the granularity necessary for the high-precision demands of MHC-peptide interaction prediction. A comparative analysis was conducted against the homology-modeling-based method Pandora [13], as well as the AlphaFold multimer model [8]. Our results demonstrate that our fine-tuned model outperforms both in terms of RMSD (median value is 0.65 Å) but also provides enhanced predicted lDDT scores, offering a more reliable assessment of the predicted structures. These advances have substantial implications for computational immunology, potentially accelerating the development of novel therapeutics and vaccines by providing a more precise computational lens through which to view MHC-peptide interactions.

11.
J Chem Theory Comput ; 19(21): 7934-7945, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37831619

RESUMO

Virtual screening (VS) involves generation of poses for a library of ligands and ranking using simplified energy functions and limited flexibility. Top-scored poses are used to rank and prioritize ligands. Here, we adapt the reservoir replica exchange molecular dynamics (res-REMD) method to rerank poses generated through VS. REMD simulations are carried out but with occasional Monte Carlo jumps to alternate VS-generated poses using a Metropolis criterion. The simulations converge within 10 ns for all systems, generating populations of alternate poses in the context of fully flexible ligand and protein side chains. The protocol is applied to four model protein-ligand complexes, where DOCK resulted in two successes and two scoring failures. In all four systems, the most populated cluster from the final ensemble exhibits high similarity to the crystallographic pose with ligand RMSD values under 2.0 Å. Both DOCK failures were rescued. For one DOCK success, the protocol identified the correct pose but also sampled an alternate pose at equal probability. Opportunities for future improvements and extensions are discussed.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Ligação Proteica , Simulação de Acoplamento Molecular , Ligantes , Proteínas/química
13.
J Chem Theory Comput ; 19(6): 1931-1944, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36861842

RESUMO

Generating precise ensembles is commonly a prerequisite to understand the energetics of biological processes using Molecular Dynamics (MD) simulations. Previously, we have shown how unweighted reservoirs built from high temperature MD simulations can accelerate convergence of Boltzmann-weighted ensembles by at least 10× with the Reservoir Replica Exchange MD (RREMD) method. Therefore, in this work, we explore whether an unweighted structure reservoir generated with one Hamiltonian (solute force field plus solvent model) can be reused to quickly generate accurately weighted ensembles for Hamiltonians other than the one that was used to generate the reservoir. We also extended this methodology to rapidly estimate the effects of mutations on peptide stability by using a reservoir of diverse structures obtained from wild-type simulations. These results suggest that structures generated via fast methods such as coarse-grained models or structures predicted by Rosetta or deep learning approaches could be integrated into a reservoir to accelerate generation of ensembles using more accurate representations.


Assuntos
Peptídeos , Proteínas , Proteínas/genética , Proteínas/química , Peptídeos/química , Simulação de Dinâmica Molecular , Mutação
14.
J Chem Inf Model ; 63(4): 1087-1092, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36758040

RESUMO

In this application note, we describe a tool which we developed to help structural biologists who study the SARS-CoV-2 spike glycoprotein. There are more than 500 structures of this protein available in the Protein Data Bank. These structures are available in different flavors: wild type spike, different variants, 2P substitutions, structures with bound antibodies, structures with Receptor Binding Domains (RBD) in closed or open conformation, etc. Understanding differences between these structures could provide insight into how the spike structure changes in different variants or upon interaction with different molecules such as receptors or antibodies. However, inconsistencies among deposited structures, such as different chain or sequence numbering, hamper a straightforward comparison of all structures. The tool described in this note fixes those chain inconsistencies and calculates the distribution of the requested distance between any two atoms across all SARS-CoV-2 spike structures available in the Protein Data Bank (excluding PDB files with only spike fragments such as the RBD), with the option to filter by various selections. The tool provides a histogram and cumulative frequency of the calculated distribution, as the ability to download the results and corresponding PDB IDs.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Sítios de Ligação , Glicoproteína da Espícula de Coronavírus/metabolismo , Ligação Proteica
15.
Protein Sci ; 32(2): e4539, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36484106

RESUMO

Amyloids are partially ordered, proteinaceous, ß-sheet rich deposits that have been implicated in a wide range of diseases. An even larger set of proteins that do not normally form amyloid in vivo can be induced to do so in vitro. A growing number of structures of amyloid fibrils have been reported and a common feature is the presence of a tightly packed core region in which adjacent monomers pack together in extremely tight interfaces, often referred to as steric zippers. A second common feature of many amyloid fibrils is their polymorphous nature. We examine the consequences of disrupting the tight packing in amyloid fibrils on the kinetics of their formation using the 37 residue polypeptide hormone islet amyloid polypeptide (IAPP, amylin) as a model system. IAPP forms islet amyloid in vivo and is aggressively amyloidogenic in vitro. Six Cryo-EM structures of IAPP amyloid fibrils are available and in all Gly24 is in the core of the structured region and makes tight contacts with other residues. Calculations using the ff14SBonlysc forcefield in Amber20 show that substitutions with larger amino acids significantly disrupt close packing and are predicted to destabilize the various fibril structures. However, Gly to 2-amino butyric acid (2-carbon side chain) and Gly to Leu substitutions actually enhance the rate of amyloid formation. A Pro substitution slows, but does not prevent amyloid formation.


Assuntos
Amiloide , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Amiloide/química
16.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36499696

RESUMO

We present here a freely available web-based database, called BioMThermDB 1.0, of thermophysical and dynamic properties of various proteins and their aqueous solutions. It contains the hydrodynamic radius, electrophoretic mobility, zeta potential, self-diffusion coefficient, solution viscosity, and cloud-point temperature, as well as the conditions for those determinations and details of the experimental method. It can facilitate the meta-analysis and visualization of data, can enable comparisons, and may be useful for comparing theoretical model predictions with experiments.


Assuntos
Hidrodinâmica , Proteínas , Soluções , Viscosidade , Água
17.
Sci Immunol ; 7(78): eadf1421, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36356052

RESUMO

Numerous safe and effective coronavirus disease 2019 vaccines have been developed worldwide that use various delivery technologies and engineering strategies. We show here that vaccines containing prefusion-stabilizing S mutations elicit antibody responses in humans with enhanced recognition of S and the S1 subunit relative to postfusion S as compared with vaccines lacking these mutations or natural infection. Prefusion S and S1 antibody binding titers positively and equivalently correlated with neutralizing activity, and depletion of S1-directed antibodies completely abrogated plasma neutralizing activity. We show that neutralizing activity is almost entirely directed to the S1 subunit and that variant cross-neutralization is mediated solely by receptor binding domain-specific antibodies. Our data provide a quantitative framework for guiding future S engineering efforts to develop vaccines with higher resilience to the emergence of variants than current technologies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinação , Anticorpos Neutralizantes , Vacinas contra COVID-19
18.
J Chem Theory Comput ; 18(6): 3930-3947, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35502992

RESUMO

RNA is a key participant in many biological processes, but studies of RNA using computer simulations lag behind those of proteins, largely due to less-developed force fields and the slow dynamics of RNA. Generating converged RNA ensembles for force field development and other studies remains a challenge. In this study, we explore the ability of replica exchange molecular dynamics to obtain well-converged conformational ensembles for two RNA hairpin systems in an implicit solvent. Even for these small model systems, standard REMD remains computationally costly, but coupling to a pre-generated structure library using the reservoir REMD approach provides a dramatic acceleration of ensemble convergence for both model systems. Such precise ensembles could facilitate RNA force field development and validation and applications of simulation to more complex RNA systems. The advantages and remaining challenges of applying R-REMD to RNA are investigated in detail.


Assuntos
Simulação de Dinâmica Molecular , RNA , Humanos , Conformação Molecular , Proteínas , RNA/química , Solventes/química
19.
ACS Cent Sci ; 8(1): 22-42, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35106370

RESUMO

Inspired by the role of cell-surface glycoproteins as coreceptors for pathogens, we report the development of GlycoGrip: a glycopolymer-based lateral flow assay for detecting SARS-CoV-2 and its variants. GlycoGrip utilizes glycopolymers for primary capture and antispike antibodies labeled with gold nanoparticles for signal-generating detection. A lock-step integration between experiment and computation has enabled efficient optimization of GlycoGrip test strips which can selectively, sensitively, and rapidly detect SARS-CoV-2 and its variants in biofluids. Employing the power of the glycocalyx in a diagnostic assay has distinct advantages over conventional immunoassays as glycopolymers can bind to antigens in a multivalent capacity and are highly adaptable for mutated strains. As new variants of SARS-CoV-2 are identified, GlycoGrip will serve as a highly reconfigurable biosensor for their detection. Additionally, via extensive ensemble-based docking simulations which incorporate protein and glycan motion, we have elucidated important clues as to how heparan sulfate and other glycocalyx components may bind the spike glycoprotein during SARS-CoV-2 host-cell infection. GlycoGrip is a promising and generalizable alternative to costly, labor-intensive RT-PCR, and we envision it will be broadly useful, including for rural or low-income populations that are historically undertested and under-reported in infection statistics.

20.
J Am Chem Soc ; 143(30): 11349-11360, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34270232

RESUMO

The SARS-CoV-2 coronavirus is an enveloped, positive-sense single-stranded RNA virus that is responsible for the COVID-19 pandemic. The spike is a class I viral fusion glycoprotein that extends from the viral surface and is responsible for viral entry into the host cell and is the primary target of neutralizing antibodies. The receptor binding domain (RBD) of the spike samples multiple conformations in a compromise between evading immune recognition and searching for the host-cell surface receptor. Using atomistic simulations of the glycosylated wild-type spike in the closed and 1-up RBD conformations, we map the free energy landscape for RBD opening and identify interactions in an allosteric pocket that influence RBD dynamics. The results provide an explanation for experimental observation of increased antibody binding for a clinical variant with a substitution in this pocket. Our results also suggest the possibility of allosteric targeting of the RBD equilibrium to favor open states via binding of small molecules to the hinge pocket. In addition to potential value as experimental probes to quantify RBD conformational heterogeneity, small molecules that modulate the RBD equilibrium could help explore the relationship between RBD opening and S1 shedding.


Assuntos
SARS-CoV-2/química , Glicoproteína da Espícula de Coronavírus/química , Sítio Alostérico , Simulação de Dinâmica Molecular , Domínios Proteicos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA