Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36993278

RESUMO

Material- and cell-based technologies such as engineered tissues hold great promise as human therapies. Yet, the development of many of these technologies becomes stalled at the stage of pre-clinical animal studies due to the tedious and low-throughput nature of in vivo implantation experiments. We introduce a 'plug and play' in vivo screening array platform called Highly Parallel Tissue Grafting (HPTG). HPTG enables parallelized in vivo screening of 43 three-dimensional microtissues within a single 3D printed device. Using HPTG, we screen microtissue formations with varying cellular and material components and identify formulations that support vascular self-assembly, integration and tissue function. Our studies highlight the importance of combinatorial studies that vary cellular and material formulation variables concomitantly, by revealing that inclusion of stromal cells can "rescue" vascular self-assembly in manner that is material-dependent. HPTG provides a route for accelerating pre-clinical progress for diverse medical applications including tissue therapy, cancer biomedicine, and regenerative medicine.

2.
Nano Lett ; 21(20): 8734-8740, 2021 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-34623161

RESUMO

Although dry eye is highly prevalent, many challenges exist in diagnosing the symptom and related diseases. For this reason, anionic hydrogel-coated gold nanoshells (AuNSs) were used in the development of a label-free biosensor for detection of high isoelectric point tear biomarkers associated with dry eye. A custom, aldehyde-functionalized oligo(ethylene glycol)acrylate (Al-OEGA) was included in the hydrogel coating to enhance protein recognition through the formation of dynamic covalent (DC) imine bonds with solvent-accessible lysine residues present on the surface of select tear proteins. Our results demonstrated that hydrogel-coated AuNSs, composed of monomers that form ionic and DC bonds with select tear proteins, greatly enhance protein recognition due to changes in the maximum localized surface plasmon resonance wavelength exhibited by AuNSs in noncompetitive and competitive environments. Validation of the developed biosensor in commercially available pooled human tears revealed the potential for clinical translation to establish a method for dry eye diagnosis.


Assuntos
Síndromes do Olho Seco , Nanoconchas , Biomarcadores , Ouro , Humanos , Hidrogéis , Eletricidade Estática
3.
Chem Commun (Camb) ; 56(45): 6141-6144, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32364214

RESUMO

An aldehyde acrylate-based functional monomer was incorporated into poly(N-isopropylacrylamide-co-methacrylic acid) nanogels for use as protein receptors. The aldehyde component forms dynamic imines with surface exposed lysine residues, while carboxylic acid/carboxylate moieties form electrostatic interactions with high isoelectric point proteins. Together, these interactions effect protein adsorption and recognition.


Assuntos
Acrilamidas/química , Albuminas/química , Imunoglobulina G/química , Lactoferrina/química , Lactoglobulinas/química , Muramidase/química , Nanogéis/química , Ácidos Polimetacrílicos/química , Adsorção , Ponto Isoelétrico , Eletricidade Estática
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...