Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Physiol Mol Biol Plants ; 28(5): 963-969, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35722510

RESUMO

Catharanthus roseus is a clinically significant medicinal plant; the sole source of chemotherapy agents, vincristine and vinblastine (specialized metabolites, terpenoid indole alkaloids/TIAs). Owing to large clinical demand and low bioavailability, several studies have focused on biosynthesis and regulation of TIA biosynthesis in C. roseus. However, transcription factor mediated regulation has been a major research focus, and the impact of post-transcriptional regulation remains under-explored. RNA binding proteins (RBPs) are an emerging class of post-transcriptional regulators having a profound influence on transcript stability. Pumilio (Pum) RBPs are evolutionarily conserved post-transcriptional regulators, involved in RNA degradation across eukaryotes. However, their potential influence on TIA biosynthesis has not been studied till date in any medicinal plants including C. roseus. Thus, the present study aimed at identification and computational characterization of Pum in C. roseus, followed by expression and functional analyses. The genome-wide identification and characterization revealed twelve CrPum isoforms. The effect of CrPum2, 3, and 5 knockdown on TIA biosynthesis (specifically vindoline and catharanthine) was analyzed via high performance liquid chromatography. CrPum5 knockdown was associated with increased TIA levels and upregulation of key TIA pathway genes. Thus, the present study is the first to report the potential influence of Pum on TIA biosynthesis in C. roseus. Further studies to elucidate the mechanism of Pum activity could provide new insights into the molecular regulation of TIA biosynthesis. A holistic understanding of regulatory mechanisms could benefit the metabolic engineering programs aimed at higher productivity of plant specialized metabolites. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01193-5.

3.
Mol Biol Rep ; 47(1): 785-807, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31643042

RESUMO

The Pumilio (Pum)/Puf family proteins are ubiquitously present across eukaryotes, including yeast, plants and humans. They generally bind to the 3' untranslated regions of single stranded RNA targets in a sequence specific manner and destabilize them, although a few reports suggest their role in stabilizing the target transcripts. The Pum isoforms are implicated in a wide array of biological processes including stem cell maintenance, development, ribosome biogenesis as well as human diseases. Further studies on Pum would be interesting and important to understand their evolutionarily conserved and divergent features across species, which can have potential implications in medicine, plant sciences as well as basic molecular and cell biological studies. A large number of research reports exists, pertaining to various aspects of Pum, in individual experimental systems. This review is a comprehensive summary of the functions, types, mechanism of action as well as the regulation of Pum in various species. Also, the research questions to be addressed in future are discussed.


Assuntos
Proteínas de Ligação a RNA , Regiões 3' não Traduzidas , Animais , Arabidopsis , Humanos , Camundongos , Processamento Pós-Transcricional do RNA , Xenopus
4.
Sci Rep ; 8(1): 15059, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305670

RESUMO

Catharanthus roseus is a commercial source for anti-cancer terpenoid indole alkaloids (TIAs: vincristine and vinblastine). Inherent levels of these TIAs are very low, hence research studies need to focus on enhancing their levels in planta. Since primary metabolism provides precursors for specialized-metabolism, elevating the former can achieve higher amounts of the latter. Cell Wall Invertase (CWIN), a key enzyme in sucrose-metabolism catalyses the breakdown of sucrose into glucose and fructose, which serve as carbon-skeleton for specialized-metabolites. Understanding CWIN regulation could unravel metabolic-engineering approaches towards enhancing the levels of TIAs in planta. Our study is the first to characterize CWIN at gene-expression level in the medicinal plant, C. roseus. The CWINs and their inter-relationship with sucrose and TIA metabolism was studied at gene and metabolite levels. It was found that sucrose-supplementation to C. roseus leaves significantly elevated the monomeric TIAs (vindoline, catharanthine) and their corresponding genes. This was further confirmed in cross-species, wherein Nicotiana benthamiana leaves transiently-overexpressing CrCWIN2 showed significant upregulation of specialized-metabolism genes: NbPAL2, Nb4CL, NbCHS, NbF3H, NbANS, NbHCT and NbG10H. The specialized metabolites- cinnamic acid, coumarin, and fisetin were significantly upregulated. Thus, the present study provides a valuable insight into metabolic-engineering approaches towards augmenting the levels of therapeutic TIAs.


Assuntos
Catharanthus/enzimologia , Catharanthus/metabolismo , Parede Celular/enzimologia , Estresse Fisiológico , beta-Frutofuranosidase/genética , Antioxidantes/metabolismo , Catharanthus/citologia , Catharanthus/genética , Simulação por Computador , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Metaboloma , Especificidade de Órgãos/genética , Filogenia , Folhas de Planta/metabolismo , Solubilidade , Estresse Fisiológico/genética , Nicotiana , beta-Frutofuranosidase/metabolismo
5.
Sci Rep ; 8(1): 2222, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29403001

RESUMO

The role of Melatonin in influencing diverse genes in plants has gained momentum in recent years and many reports have employed qRT-PCR for their quantification. Relative quantification of gene expression relies on accurate normalization of qRT-PCR data against a stably-expressing internal reference-gene. Although researchers have been using commonly available reference-genes to assess Melatonin-induced gene expression, but to-date, there have been no attempts to validate the reference-gene stability under Melatonin-supplementation in planta. In this study, we performed stability assessment of common reference-genes under Melatonin-supplementation and abiotic stress in leaves and seedlings of Catharanthus roseus using geNorm, NormFinder, BestKeeper, ΔCt and RefFinder algorithms. Nine candidate reference-genes were tested for stability in C. roseus (FBOX, CACS, TIP, RSP9, EXP, EXPR, SAND, F17M5, ACT) and our study inferred that while EXP and EXPR were the most-stable, F17M5 was the lowest-stable gene in the leaf-fed samples. Among seedlings of C. roseus, F17M5 and TIP were the most, while ACT was the least-stable gene. The suitability of selected stable reference-gene pairs was demonstrated by assessing the transcript levels of the Melatonin-biosynthesis gene SNAT under same conditions. Our study is the first to comprehensively analyze the stability of commonly-used reference-genes under Melatonin-induced conditions in C. roseus.


Assuntos
Antioxidantes/farmacologia , Catharanthus/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Melatonina/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Catharanthus/efeitos dos fármacos , Perfilação da Expressão Gênica , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Padrões de Referência , Plântula/efeitos dos fármacos , Plântula/metabolismo
6.
Front Plant Sci ; 7: 1725, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933071

RESUMO

Plant specialized metabolites are being used worldwide as therapeutic agents against several diseases. Since the precursors for specialized metabolites come through primary metabolism, extensive investigations have been carried out to understand the detailed connection between primary and specialized metabolism at various levels. Stress regulates the expression of primary and specialized metabolism genes at the transcriptional level via transcription factors binding to specific cis-elements. The presence of varied cis-element signatures upstream to different stress-responsive genes and their transcription factor binding patterns provide a prospective molecular link among diverse metabolic pathways. The pattern of occurrence of these cis-elements (overrepresentation/common) decipher the mechanism of stress-responsive upregulation of downstream genes, simultaneously forming a molecular bridge between primary and specialized metabolisms. Though many studies have been conducted on the transcriptional regulation of stress-mediated primary or specialized metabolism genes, but not much data is available with regard to cis-element signatures and transcription factors that simultaneously modulate both pathway genes. Hence, our major focus would be to present a comprehensive analysis of the stress-mediated interconnection between primary and specialized metabolism genes via the interaction between different transcription factors and their corresponding cis-elements. In future, this study could be further utilized for the overexpression of the specific transcription factors that upregulate both primary and specialized metabolism, thereby simultaneously improving the yield and therapeutic content of plants.

7.
PLoS One ; 11(3): e0152411, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27031857

RESUMO

Apomixis, or clonal propagation through seed, is a trait identified within multiple species of the grass family (Poaceae). The genetic locus controlling apomixis in Pennisetum squamulatum (syn Cenchrus squamulatus) and Cenchrus ciliaris (syn Pennisetum ciliare, buffelgrass) is the apospory-specific genomic region (ASGR). Previously, the ASGR was shown to be highly conserved but inverted in marker order between P. squamulatum and C. ciliaris based on fluorescence in situ hybridization (FISH) and varied in both karyotype and position of the ASGR on the ASGR-carrier chromosome among other apomictic Cenchrus/Pennisetum species. Using in silico transcript mapping and verification of physical positions of some of the transcripts via FISH, we discovered that the ASGR-carrier chromosome from P. squamulatum is collinear with chromosome 2 of foxtail millet and sorghum outside of the ASGR. The in silico ordering of the ASGR-carrier chromosome markers, previously unmapped in P. squamulatum, allowed for the identification of a backcross line with structural changes to the P. squamulatum ASGR-carrier chromosome derived from gamma irradiated pollen.


Assuntos
Cromossomos de Plantas , Pennisetum/genética , Sorghum/genética , Apomixia/genética , Cromossomos Artificiais Bacterianos , Mapeamento de Sequências Contíguas , Ligação Genética , Hibridização in Situ Fluorescente , Setaria (Planta)/genética
8.
BMC Res Notes ; 6: 397, 2013 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-24083672

RESUMO

BACKGROUND: Apomixis is a naturally occurring asexual mode of seed reproduction resulting in offspring genetically identical to the maternal plant. Identifying differential gene expression patterns between apomictic and sexual plants is valuable to help deconstruct the trait. Quantitative RT-PCR (qRT-PCR) is a popular method for analyzing gene expression. Normalizing gene expression data using proper reference genes which show stable expression under investigated conditions is critical in qRT-PCR analysis. We used qRT-PCR to validate expression and stability of six potential reference genes (EF1alpha, EIF4A, UBCE, GAPDH, ACT2 and TUBA) in vegetative and reproductive tissues of B-2S and B-12-9 accessions of C. ciliaris. FINDINGS: Among tissue types evaluated, EF1alpha showed the highest level of expression while TUBA showed the lowest. When all tissue types were evaluated and compared between genotypes, EIF4A was the most stable reference gene. Gene expression stability for specific ovary stages of B-2S and B-12-9 was also determined. Except for TUBA, all other tested reference genes could be used for any stage-specific ovary tissue normalization, irrespective of the mode of reproduction. CONCLUSION: Our gene expression stability assay using six reference genes, in sexual and apomictic accessions of C. ciliaris, suggests that EIF4A is the most stable gene across all tissue types analyzed. All other tested reference genes, with the exception of TUBA, could be used for gene expression comparison studies between sexual and apomictic ovaries over multiple developmental stages. This reference gene validation data in C. ciliaris will serve as an important base for future apomixis-related transcriptome data validation.


Assuntos
Apomixia/genética , Cenchrus/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Flores/genética , Especificidade de Órgãos/genética , Padrões de Referência , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Software
9.
Planta ; 232(5): 1151-62, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20706735

RESUMO

Glutamine synthetase (GS) catalyzes the ATP-dependent condensation of ammonia with glutamate to produce glutamine. The GS enzyme is located either in the chloroplast (GS(2)) or in the cytoplasm (GS(1)). GS(1) is encoded by a small gene family and the members exhibit differential expression pattern mostly attributed to transcriptional regulation. Based on our recent finding that a soybean GS(1) gene, Gmglnß ( 1 ) is subject to its 3'UTR-mediated post-transcriptional regulation as a transgene in alfalfa (Medicago sativa) we have raised the question of whether the 3'UTR-mediated transcript destabilization is a more universal phenomenon. Gene constructs consisting of the CaMV35S promoter driving the reporter gene, GUS, followed by the 3'UTRs of the two alfalfa GS(1) genes, MsGSa and MsGSb, were introduced into alfalfa and tobacco. The analysis of these transformants suggests that while both the 3'UTRs promote transcript turnover, the MsGSb 3'UTR is more effective than the MsGSa 3'UTR. However, both the 3'UTRs along with Gmglnß ( 1 ) 3'UTR respond to nitrate as a trigger in transcript turnover. More detailed analysis points to glutamine rather than nitrate as the mediator of transcript turnover. Our data suggests that the 3'UTR-mediated regulation of GS(1) genes at the level of transcript turnover is probably universal and is used for fine-tuning the expression in keeping with the availability of the substrates.


Assuntos
Regiões 3' não Traduzidas/genética , Citosol/enzimologia , Glutamato-Amônia Ligase/genética , Glutamina/farmacologia , Medicago sativa/enzimologia , Medicago sativa/genética , Regiões 3' não Traduzidas/fisiologia , Northern Blotting , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Medicago sativa/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...