Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 7(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37879938

RESUMO

Recent advances in single-cell omics have transformed characterisation of cell types in challenging-to-study biological contexts. In contexts with limited single-cell samples, such as the early human embryo inference of transcription factor-gene regulatory network (GRN) interactions is especially difficult. Here, we assessed application of different linear or non-linear GRN predictions to single-cell simulated and human embryo transcriptome datasets. We also compared how expression normalisation impacts on GRN predictions, finding that transcripts per million reads outperformed alternative methods. GRN inferences were more reproducible using a non-linear method based on mutual information (MI) applied to single-cell transcriptome datasets refined with chromatin accessibility (CA) (called MICA), compared with alternative network prediction methods tested. MICA captures complex non-monotonic dependencies and feedback loops. Using MICA, we generated the first GRN inferences in early human development. MICA predicted co-localisation of the AP-1 transcription factor subunit proto-oncogene JUND and the TFAP2C transcription factor AP-2γ in early human embryos. Overall, our comparative analysis of GRN prediction methods defines a pipeline that can be applied to single-cell multi-omics datasets in especially challenging contexts to infer interactions between transcription factor expression and target gene regulation.


Assuntos
Redes Reguladoras de Genes , Multiômica , Humanos , Redes Reguladoras de Genes/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética , Embrião de Mamíferos
2.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36971487

RESUMO

Our understanding of the molecular events driving cell specification in early mammalian development relies mainly on mouse studies, and it remains unclear whether these mechanisms are conserved across mammals, including humans. We have shown that the establishment of cell polarity via aPKC is a conserved event in the initiation of the trophectoderm (TE) placental programme in mouse, cow and human embryos. However, the mechanisms transducing cell polarity into cell fate in cow and human embryos are unknown. Here, we have examined the evolutionary conservation of Hippo signalling, which is thought to function downstream of aPKC activity, in four different mammalian species: mouse, rat, cow and human. In all four species, inhibition of the Hippo pathway by targeting LATS kinases is sufficient to drive ectopic TE initiation and downregulation of SOX2. However, the timing and localisation of molecular markers differ across species, with rat embryos more closely recapitulating human and cow developmental dynamics, compared with the mouse. Our comparative embryology approach uncovered intriguing differences as well as similarities in a fundamental developmental process among mammals, reinforcing the importance of cross-species investigations.


Assuntos
Via de Sinalização Hippo , Transdução de Sinais , Bovinos , Humanos , Feminino , Gravidez , Camundongos , Ratos , Animais , Transdução de Sinais/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Blastocisto/metabolismo , Placenta/metabolismo , Mamíferos/metabolismo , Linhagem da Célula
4.
Nat Cell Biol ; 23(1): 61-74, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33420489

RESUMO

Extra-embryonic mesoderm (ExM)-composed of the earliest cells that traverse the primitive streak-gives rise to the endothelium as well as haematopoietic progenitors in the developing yolk sac. How a specific subset of ExM becomes committed to a haematopoietic fate remains unclear. Here we demonstrate using an embryonic stem cell model that transient expression of the T-box transcription factor Eomesodermin (Eomes) governs haemogenic competency of ExM. Eomes regulates the accessibility of enhancers that the transcription factor stem cell leukaemia (SCL) normally utilizes to specify primitive erythrocytes and is essential for the normal development of Runx1+ haemogenic endothelium. Single-cell RNA sequencing suggests that Eomes loss of function profoundly blocks the formation of blood progenitors but not specification of Flk-1+ haematoendothelial progenitors. Our findings place Eomes at the top of the transcriptional hierarchy regulating early blood formation and suggest that haemogenic competence is endowed earlier during embryonic development than was previously appreciated.


Assuntos
Células-Tronco Embrionárias/citologia , Hemangioblastos/citologia , Mesoderma/citologia , Proteínas com Domínio T/fisiologia , Saco Vitelino/citologia , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Embrionárias/metabolismo , Feminino , Hemangioblastos/metabolismo , Masculino , Mesoderma/metabolismo , Camundongos Knockout , Gravidez , RNA-Seq , Análise de Célula Única , Proteína 1 de Leucemia Linfocítica Aguda de Células T/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Saco Vitelino/metabolismo
5.
Dev Cell ; 55(3): 341-353.e5, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33091370

RESUMO

FGF/ERK signaling is crucial for the patterning and proliferation of cell lineages that comprise the mouse blastocyst. However, ERK signaling dynamics have never been directly visualized in live embryos. To address whether differential signaling is associated with particular cell fates and states, we generated a targeted mouse line expressing an ERK-kinase translocation reporter (KTR) that enables live quantification of ERK activity at single-cell resolution. 3D time-lapse imaging of this biosensor in embryos revealed spatially graded ERK activity in the trophectoderm prior to overt polar versus mural differentiation. Within the inner cell mass (ICM), all cells relayed FGF/ERK signals with varying durations and magnitude. Primitive endoderm cells displayed higher overall levels of ERK activity, while pluripotent epiblast cells exhibited lower basal activity with sporadic pulses. These results constitute a direct visualization of signaling events during mammalian pre-implantation development and reveal the existence of spatial and temporal lineage-specific dynamics.


Assuntos
Blastocisto/citologia , Blastocisto/enzimologia , Linhagem da Célula , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Transdução de Sinais , Animais , Sobrevivência Celular , Ectoderma/citologia , Fatores de Crescimento de Fibroblastos/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Fatores de Tempo , Trofoblastos/citologia
6.
Nature ; 569(7756): 361-367, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959515

RESUMO

Here we delineate the ontogeny of the mammalian endoderm by generating 112,217 single-cell transcriptomes, which represent all endoderm populations within the mouse embryo until midgestation. We use graph-based approaches to model differentiating cells, which provides a spatio-temporal characterization of developmental trajectories and defines the transcriptional architecture that accompanies the emergence of the first (primitive or extra-embryonic) endodermal population and its sister pluripotent (embryonic) epiblast lineage. We uncover a relationship between descendants of these two lineages, in which epiblast cells differentiate into endoderm at two distinct time points-before and during gastrulation. Trajectories of endoderm cells were mapped as they acquired embryonic versus extra-embryonic fates and as they spatially converged within the nascent gut endoderm, which revealed these cells to be globally similar but retain aspects of their lineage history. We observed the regionalized identity of cells along the anterior-posterior axis of the emergent gut tube, which reflects their embryonic or extra-embryonic origin, and the coordinated patterning of these cells into organ-specific territories.


Assuntos
Endoderma/citologia , Endoderma/embriologia , Intestinos/citologia , Intestinos/embriologia , Análise de Célula Única , Animais , Blastocisto/citologia , Padronização Corporal , Diferenciação Celular , Linhagem da Célula , Feminino , Gastrulação , Masculino , Camundongos
7.
Biol Open ; 7(12)2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30530745

RESUMO

The GATA zinc-finger transcription factor GATA4 is expressed in a variety of tissues during mouse embryonic development and in adult organs. These include the primitive endoderm of the blastocyst, visceral endoderm of the early post-implantation embryo, as well as lateral plate mesoderm, developing heart, liver, lung and gonads. Here, we generate a novel Gata4 targeted allele used to generate both a Gata4H2B-GFP transcriptional reporter and a Gata4FLAG fusion protein to analyse dynamic expression domains. We demonstrate that the Gata4H2B-GFP transcriptional reporter faithfully recapitulates known sites of Gata4 mRNA expression and correlates with endogenous GATA4 protein levels. This reporter labels nuclei of Gata4 expressing cells and is suitable for time-lapse imaging and single cell analyses. As such, this Gata4H2B-GFP allele will be a useful tool for studying Gata4 expression and transcriptional regulation.This article has an associated First Person interview with the first author of the paper.

8.
Cell ; 175(4): 905-907, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388450

RESUMO

In this issue, Metzis et al., demonstrate that in the development of the central nervous system, patterning along the anterior-posterior axis precedes acquisition of neural identity. This contrasts with the prevailing view that neural identity comes first, providing a new window on the origins of the brain and spinal cord.


Assuntos
Padronização Corporal , Sistema Nervoso Central , Encéfalo , Sistema Nervoso , Medula Espinal
9.
Dev Biol ; 441(1): 104-126, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29964027

RESUMO

The FGF/ERK signaling pathway is highly conserved throughout evolution and plays fundamental roles during embryonic development and in adult organisms. While a plethora of expression data exists for ligands, receptors and pathway regulators, we know little about the spatial organization or dynamics of signaling in individual cells within populations. To this end we developed a transcriptional readout of FGF/ERK activity by targeting a histone H2B-linked Venus fluorophore to the endogenous locus of Spry4, an early pathway target, and generated Spry4H2B-Venus embryonic stem cells (ESCs) and a derivative mouse line. The Spry4H2B-Venus reporter was heterogeneously expressed within ESC cultures and responded to FGF/ERK signaling manipulation. In vivo, the Spry4H2B-Venus reporter recapitulated the expression pattern of Spry4 and localized to sites of known FGF/ERK activity including the inner cell mass of the pre-implantation embryo and the limb buds, somites and isthmus of the post-implantation embryo. Additionally, we observed highly localized reporter expression within adult organs. Genetic and chemical disruption of FGF/ERK signaling, in vivo in pre- and post-implantation embryos, abrogated Venus expression establishing the reporter as an accurate signaling readout. This tool will provide new insights into the dynamics of the FGF/ERK signaling pathway during mammalian development.


Assuntos
Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário/fisiologia , Fatores de Crescimento de Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Células-Tronco Embrionárias Murinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Organogênese/fisiologia , Animais , Rastreamento de Células/métodos , Embrião de Mamíferos/citologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Proteínas do Tecido Nervoso/genética
10.
Wiley Interdiscip Rev Dev Biol ; 7(4): e319, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29709110

RESUMO

Understanding how individual cells make fate decisions that lead to the faithful formation and homeostatic maintenance of tissues is a fundamental goal of contemporary developmental and stem cell biology. Seemingly uniform populations of stem cells and multipotent progenitors display a surprising degree of heterogeneity, primarily originating from the inherent stochastic nature of molecular processes underlying gene expression. Despite this heterogeneity, lineage decisions result in tissues of a defined size and with consistent proportions of differentiated cell types. Using the early mouse embryo as a model we review recent developments that have allowed the quantification of molecular intercellular heterogeneity during cell differentiation. We first discuss the relationship between these heterogeneities and developmental cellular potential. We then review recent theoretical approaches that formalize the mechanisms underlying fate decisions in the inner cell mass of the blastocyst stage embryo. These models build on our extensive knowledge of the genetic control of fate decisions in this system and will become essential tools for a rigorous understanding of the connection between noisy molecular processes and reproducible outcomes at the multicellular level. We conclude by suggesting that cell-to-cell communication provides a mechanism to exploit and buffer intercellular variability in a self-organized process that culminates in the reproducible formation of the mature mammalian blastocyst stage embryo that is ready for implantation into the maternal uterus. This article is categorized under: Gene Expression and Transcriptional Hierarchies > Cellular Differentiation Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics Gene Expression and Transcriptional Hierarchies > Quantitative Methods and Models.


Assuntos
Blastocisto/fisiologia , Diferenciação Celular/fisiologia , Modelos Biológicos , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos
11.
Development ; 144(7): 1249-1260, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28174238

RESUMO

The T-box transcription factor (TF) Eomes is a key regulator of cell fate decisions during early mouse development. The cis-acting regulatory elements that direct expression in the anterior visceral endoderm (AVE), primitive streak (PS) and definitive endoderm (DE) have yet to be defined. Here, we identified three gene-proximal enhancer-like sequences (PSE_a, PSE_b and VPE) that faithfully activate tissue-specific expression in transgenic embryos. However, targeted deletion experiments demonstrate that PSE_a and PSE_b are dispensable, and only VPE is required for optimal Eomes expression in vivo Embryos lacking this enhancer display variably penetrant defects in anterior-posterior axis orientation and DE formation. Chromosome conformation capture experiments reveal VPE-promoter interactions in embryonic stem cells (ESCs), prior to gene activation. The locus resides in a large (500 kb) pre-formed compartment in ESCs and activation during DE differentiation occurs in the absence of 3D structural changes. ATAC-seq analysis reveals that VPE, PSE_a and four additional putative enhancers display increased chromatin accessibility in DE that is associated with Smad2/3 binding coincident with transcriptional activation. By contrast, activation of the Eomes target genes Foxa2 and Lhx1 is associated with higher order chromatin reorganisation. Thus, diverse regulatory mechanisms govern activation of lineage specifying TFs during early development.


Assuntos
Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sequências Reguladoras de Ácido Nucleico/genética , Proteínas com Domínio T/genética , Animais , Diferenciação Celular/genética , Cromatina/metabolismo , Endoderma/metabolismo , Elementos Facilitadores Genéticos , Feminino , Fatores de Transcrição Forkhead/metabolismo , Gastrulação/genética , Deleção de Genes , Marcação de Genes , Genes Reporter , Genótipo , Camundongos Endogâmicos C57BL , Modelos Biológicos , Proteínas do Grupo Polycomb/metabolismo , Transdução de Sinais/genética , Proteína Smad2/metabolismo , Proteínas com Domínio T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...