Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 6: 179, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555647

RESUMO

The insulin-like growth factor 2 (IGF2) mRNA binding proteins (IMPs/IGF2BPs) IMP1 and 3 are regarded as oncofetal proteins, whereas the hepatic IMP2 expression in adults is controversially discussed. The splice variant IMP2-2/p62 promotes steatohepatitis and hepatocellular carcinoma. Aim of this study was to clarify whether IMP2 is expressed in the adult liver and influences progression toward cirrhosis. IMP2 was expressed at higher levels in embryonic compared to adult tissues as quantified in embryonic, newborn, and adult C57BL/6J mouse livers and suggested by analysis of publicly available human data. In an IMP2-2 transgenic mouse model microarray and qPCR analyses revealed increased expression of liver progenitor cell (LPC) markers Bex1, Prom1, Spp1, and Cdh1 indicating a de-differentiated liver cell phenotype. Induction of these LPC markers was confirmed in human cirrhotic tissue datasets. The LPC marker SPP1 has been described to play a major role in fibrogenesis. Thus, DNA methylation was investigated in order to decipher the regulatory mechanism of Spp1 induction. In IMP2-2 transgenic mouse livers single CpG sites were differentially methylated, as quantified by amplicon sequencing, whereas human HCC samples of a human publicly available dataset showed promoter hypomethylation. In order to study the impact of IMP2 on fibrogenesis in the context of steatohepatitis wild-type or IMP2-2 transgenic mice were fed either a methionine-choline deficient (MCD) or a control diet for 2-12 weeks. MCD-fed IMP2-2 transgenic mice showed a higher incidence of ductular reaction (DR), accompanied by hepatic stellate cell activation, extracellular matrix (ECM) deposition, and induction of the LPC markers Spp1, Cdh1, and Afp suggesting the occurrence of de-differentiated cells in transgenic livers. In human cirrhotic samples IMP2 overexpression correlated with LPC marker and ECM component expression. Progression of liver disease was induced by combined MCD and diethylnitrosamine (DEN) treatment. Combined MCD-DEN treatment resulted in shorter survival of IMP2-2 transgenic compared to wild-type mice. Only IMP2-2 transgenic livers progressed to cirrhosis, which was accompanied by strong DR. In conclusion, IMP2 is an oncofetal protein in the liver that promotes DR characterized by de-differentiated cells toward steatohepatitis-associated cirrhosis development with poor survival.

2.
Immunobiology ; 222(6): 786-796, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28132721

RESUMO

Gut-derived bacterial endotoxins, such as lipopolysaccharide (LPS), contribute to the pathogenesis of steatosis and steatohepatitis by activating Kupffer cells, the resident liver macrophages. Exposure of macrophages to low doses of LPS causes hyporesponsiveness upon subsequent endotoxin challenge, a phenomenon termed endotoxin or LPS tolerance. In the present study, we aimed to examine whether LPS-induced lipid accumulation is affected by endotoxin tolerance. LPS pretreatment reduced the expression of proinflammatory mediators upon subsequent high-dose LPS treatment in murine livers. Total lipid and lipid class analysis indicated that LPS-induced lipid accumulation was not affected by endotoxin tolerance, although it was dependent on the presence of Kupffer cells. Analysis of the expression of lipogenic genes revealed that sterol regulatory element binding transcription factor 1 (Srebf1) and its target ELOVL fatty acid elongase 6 (Elovl6) were upregulated upon LPS administration in livers from LPS-tolerant and non-tolerant mice, whereas the expression of peroxisome proliferator activated receptor-α (Ppara), a key inducer of lipid degradation, was decreased. Neither Interleukin (IL)-6 expression nor the activation of its downstream effector signal transducer and activator of transcription (STAT) 3 were suppressed in liver tissues of LPS-tolerized mice. In vitro experiments confirmed that recombinant or macrophage-derived IL-6 was a potent activator of the lipogenic factor STAT3 in hepatocytes. Accordingly, IL-6 treatment led to increased lipid levels in this cell type. In summary, our data show that endotoxin tolerance does not influence LPS-induced hepatic lipid accumulation and suggest that IL-6 drives hepatic lipid storage.


Assuntos
Interleucina-6/metabolismo , Células de Kupffer/fisiologia , Fígado/imunologia , Macrófagos/imunologia , Choque Séptico/imunologia , Acetiltransferases/genética , Animais , Elongases de Ácidos Graxos , Células Hep G2 , Humanos , Tolerância Imunológica , Imunização , Metabolismo dos Lipídeos/genética , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR alfa/genética , Choque Séptico/prevenção & controle , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
3.
World J Gastroenterol ; 20(47): 17839-50, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25548482

RESUMO

AIM: To characterize how insulin-like growth factor 2 (IGF2) mRNA binding protein p62/IMP2-2 promotes steatohepatitis in the absence of dietary cholesterol. METHODS: Non-alcoholic steatohepatitis (NASH) was induced in wild-type mice and in mice overexpressing p62 specifically in the liver by feeding the mice a methionine and choline deficient (MCD) diet for either two or four weeks. As a control, animals were fed a methionine and choline supplemented diet. Serum triglycerides, cholesterol, glucose, aspartate aminotransferase and alanine transaminase were determined by standard analytical techniques. Hepatic gene expression was determined by real-time reverse transcription-polymerase chain reaction. Generation of reactive oxygen species in liver tissue was quantified as thiobarbituric acid reactive substances using a photometric assay and malondialdehyde as a standard. Tissue fatty acid profiles and cholesterol levels were analyzed by gas chromatography-mass spectrometry after hydrolysis. Hepatocellular iron accumulation was determined by Prussian blue staining in paraffin-embedded formalin-fixed tissue. Filipin staining on frozen liver tissue was used to quantify hepatic free cholesterol levels. Additionally, nuclear localization of the nuclear factor kappa B (NF-κB) subunit p65 was examined in frozen tissues. RESULTS: Liver-specific overexpression of the insulin-like growth factor 2 mRNA binding protein 2-2 (IGF2BP2-2/IMP2-2/p62) induces steatosis with regular chow and amplifies NASH-induced fibrosis in the MCD mouse model. Activation of NF-κB and expression of NF-κB target genes suggested an increased inflammatory response in p62 transgenic animals. Analysis of hepatic lipid composition revealed an elevation of monounsaturated fatty acids as well as increased hepatic cholesterol. Moreover, serum cholesterol was significantly elevated in p62 transgenic mice. Dietary cholesterol represents a critical factor for the development of NASH from hepatic steatosis. Filipin staining revealed increased free cholesterol in p62 transgenic livers, which were not diet-derived. The mRNA levels of the rate-limiting enzyme for cholesterol synthesis 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase or HMGCR) were not significantly upregulated, potentially due to increased cholesterol biosynthesis via elevated sterol regulatory element binding transcription factor 2 (SREBF2) gene expression and increased iron deposition in transgenic animals. CONCLUSION: This study provides evidence that p62/IGF2BP2-2 drives the progression of NASH through elevation of hepatic iron deposition and increased production of hepatic free cholesterol.


Assuntos
Colesterol/sangue , Fígado/metabolismo , Metionina/deficiência , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Deficiência de Colina/complicações , Modelos Animais de Doenças , Progressão da Doença , Ácidos Graxos/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Ferro/metabolismo , Peroxidação de Lipídeos , Masculino , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas de Ligação a RNA/genética , Fatores de Tempo , Regulação para Cima
4.
Acta Biomater ; 10(11): 4896-4911, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25123083

RESUMO

Superparamagnetic iron oxide nanoparticles (SPION) are widely used both clinically and experimentally for diverse in vivo applications, such as contrast enhancement in magnetic resonance imaging, hyperthermia and drug delivery. Biomedical applications require particles to have defined physical and chemical properties, and to be stable in biological media. Despite a suggested low cytotoxic action, adverse reactions of SPION in concentrations relevant for biomedical use have not yet been studied in sufficient detail. In the present work we employed Endorem®, dextran-stabilized SPION approved as an intravenous contrast agent, and compared its action to a set of other nanoparticles with potential for magnetic resonance imaging applications. SPION in concentrations relevant for in vivo applications were rapidly taken up by endothelial cells and exhibited no direct cytotoxicity. Electric cell impedance sensing measurements demonstrated that SPION, but not BaSO4/Gd nanoparticles, impaired endothelial integrity, as was confirmed by increased intercellular gap formation in endothelial monolayers. These structural changes induced the subcellular translocation and inhibition of the cytoprotective and anti-atherosclerotic enzyme endothelial NO-synthase and reduced NO production. Lipopolysaccharide-induced inflammatory NO production of macrophages was not affected by SPION. In conclusion, our data suggest that SPION might substantially alter endothelial integrity and function at therapeutically relevant doses, which are not cytotoxic.


Assuntos
Dextranos/farmacologia , Células Endoteliais/citologia , Nanopartículas/química , Óxido Nítrico/biossíntese , Morte Celular/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Hidrodinâmica , Lipopolissacarídeos/farmacologia , Nanopartículas de Magnetita , Microvasos/citologia , Nanopartículas/ultraestrutura , Óxido Nítrico Sintase Tipo III/metabolismo , Tamanho da Partícula , Eletricidade Estática
5.
Int J Mol Sci ; 15(4): 5762-73, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24714086

RESUMO

Non-alcoholic steatohepatitis (NASH) represents a risk factor for the development of hepatocellular carcinoma (HCC) and is characterized by quantitative and qualitative changes in hepatic lipids. Since elongation of fatty acids from C16 to C18 has recently been reported to promote both hepatic lipid accumulation and inflammation we aimed to investigate whether a frequently used mouse NASH model reflects this clinically relevant feature and whether C16 to C18 elongation can be observed in HCC development. Feeding mice a methionine and choline deficient diet to model NASH not only increased total hepatic fatty acids and cholesterol, but also distinctly elevated the C18/C16 ratio, which was not changed in a model of simple steatosis (ob/ob mice). Depletion of Kupffer cells abrogated both quantitative and qualitative methionine-and-choline deficient (MCD)-induced alterations in hepatic lipids. Interestingly, mimicking inflammatory events in early hepatocarcinogenesis by diethylnitrosamine-induced carcinogenesis (48 h) increased hepatic lipids and the C18/C16 ratio. Analyses of human liver samples from patients with NASH or NASH-related HCC showed an elevated expression of the elongase ELOVL6, which is responsible for the elongation of C16 fatty acids. Taken together, our findings suggest a detrimental role of an altered fatty acid pattern in the progression of NASH-related liver disease.


Assuntos
Acetiltransferases/genética , Carcinoma Hepatocelular/metabolismo , Ácidos Graxos/metabolismo , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Acetiltransferases/biossíntese , Animais , Carcinoma Hepatocelular/patologia , Colina , Dieta , Dietilnitrosamina , Modelos Animais de Doenças , Elongases de Ácidos Graxos , Humanos , Inflamação , Neoplasias Hepáticas/patologia , Metionina , Camundongos , Camundongos Endogâmicos DBA , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Mensageiro/biossíntese
7.
World J Hepatol ; 5(10): 558-67, 2013 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-24179615

RESUMO

AIM: To establish a simple method to quantify lipid classes in liver diseases and to decipher the lipid profile in p62/IMP2-2/IGF2BP2-2 transgenic mice. METHODS: Liver-specific overexpression of the insulin-like growth factor 2 mRNA binding protein p62/IMP2-2/IGF2BP2-2 was used as a model for steatosis. Steatohepatitis was induced by feeding a methionine-choline deficient diet. Steatosis was assessed histologically. For thin layer chromatographic analysis, lipids were extracted from freeze-dried tissues by hexane/2-propanol, dried, redissolved, and chromatographically separated by a two-solvent system. Dilution series of lipid standards were chromatographed, detected, and quantified. The detection was performed by either 2',7'-dichlorofluoresceine or a sulfuric acid/ethanol mixture. RESULTS: Histological analyses confirmed steatosis and steatohepatitis development. The extraction, chromatographic, and detection method showed high inter-assay reproducibility and allowed quantification of the different lipid classes. The analyses confirmed an increase of triglycerides and phosphatidylethanolamine and a decrease in phosphatidylcholine in the methionine-choline deficient diet. The method was used for the first time to asses the lipid classes induced in the p62-overexpressing mouse model and showed a significant increase in all detected lipid species with a prominent increase of triglycerides by 2-fold. Interestingly, the ratio of phosphatidylcholine to phosphatidylethanolamine was decreased, as previously suggested as a marker in the progression from steatosis to steatohepatitis. CONCLUSION: The thin layer chromatography analysis allows a reliable quantification of lipid classes and provides detailed insight into the lipogenic effect of p62.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...