Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 8554, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29867105

RESUMO

Anthropic nanoparticles (NP) are increasingly produced and emitted, with accompanying concerns for human health. Currently there is no global understanding as to the exact mechanistics of NP toxicity, as the traditional nanotoxicological approaches only provide a restricted overview. To address this issue, we performed an in-depth transcriptomic analysis of human macrophages exposed to a panel of welding-related metal oxide NP that we previously identified in welders lungs (Fe2O3, Fe3O4, MnFe2O4 and CrOOH NP). Utilizing the specified analysis criteria (|fold change| ≥1.5, p ≤ 0.001), a total of 2164 genes were identified to be differentially expressed after THP-1 macrophage exposure to the different NP. Performing Gene Ontology enrichment analysis, for cellular content, biological processes and Swiss-Prot/Protein Information Resource keywords the data show for the first time a profound modification of gene differential expression in response to the different NP, among which MnFe2O4 NP were the most potent to induce THP-1 macrophage activation. The transcriptomic analysis utilized in the study, provides novel insights into mechanisms that could contribute to NP-induced adverse effects and support the need for widened approaches to supplement existing knowledge of the processes underlying NP toxicity which would have not been possible using traditional nanotoxicological studies.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Nanopartículas/toxicidade , Exposição Ocupacional/efeitos adversos , Soldagem , Humanos , Metais/toxicidade , Óxidos/toxicidade , Células THP-1
2.
Nanotoxicology ; 10(10): 1535-1544, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27680323

RESUMO

In spite of the great promises that the development of nanotechnologies can offer, concerns regarding potential adverse health effects of occupational exposure to nanoparticle (NP) is raised. We recently identified metal oxide NP in lung tissue sections of welders, located inside macrophages infiltrated in fibrous regions. This suggests a role of these NP in the lung alterations observed in welders. We therefore designed a study aimed to investigate the pulmonary effects, in mice, of repeated exposure to NP administered at occupationally relevant doses. We therefore chose four metal oxide NPs representative of those found in the welder's lungs: Fe2O3, Fe3O4, MnFe2O4 and CrOOH. These NPs were administered weekly for up to 3 months at two different doses: 5 µg, chosen as occupationally relevant to welding activity, and 50 µg, chosen as occupationally relevant to the context of an NP-manufacturing facility. Our results show that 3 month-repeated exposures to 5 µg NP induced limited pulmonary effects, characterized by the development of a mild peribronchiolar fibrosis observed for MnFe2O4 and CrOOH NP only. This fibrotic event was further extended in terms of intensity and localization after the repeated administration of 50 µg NP: all but Fe2O3 NP induced the development of peribronchiolar, perivascular and alveolar fibrosis, together with an interstitial inflammation. Our data demonstrate for the first time a potential risk for respiratory health posed by repeated exposure to NP at occupationally relevant doses. Given these results, the development of occupational exposure limits (OELs) specifically dedicated to NP exposure might therefore be an important issue to address.


Assuntos
Exposição por Inalação/efeitos adversos , Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Exposição Ocupacional/efeitos adversos , Pneumonia/induzido quimicamente , Soldagem , Animais , Pulmão/imunologia , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Masculino , Nanopartículas Metálicas/química , Camundongos , Camundongos Endogâmicos C57BL , Exposição Ocupacional/análise , Óxidos/toxicidade , Pneumonia/imunologia , Pneumonia/patologia
3.
Arch Toxicol ; 89(9): 1543-56, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25098341

RESUMO

Manufactured nanomaterials (MNMs) have the potential to improve everyday life as they can be utilised in numerous medical applications and day-to-day consumer products. However, this increased use has led to concerns about the potential environmental and human health impacts. The protein p53 is a key transcription factor implicated in cellular defence and reparative responses to various stress factors. Additionally, p53 has been implicated in cellular responses following exposure to some MNMs. Here, the role of the MNM mediated p53 induction and activation and its downstream effects following exposure to five well-characterised materials [namely two types of TiO2, two carbon black (CB), and one single-walled carbon nanotube (SWCNT)] were investigated. MNM internalisation, cellular viability, p53 protein induction and activation, oxidative stress, inflammation and apoptosis were measured in murine cell line and primary pulmonary macrophage models. It was observed that p53 was implicated in the biological responses to MNMs, with oxidative stress associated with p53 activation (only following exposure to the SWCNT). We demonstrate that p53 acted as an antioxidant and anti-inflammatory in macrophage responses to SWCNT and CB NMs. However, p53 was neither involved in MNM-induced cellular toxicity, nor in the apoptosis induced by these MNMs. Moreover, the physicochemical characteristics of MNMs seemed to influence their biological effects-SWCNT the materials with the largest surface area and a fibrous shape were the most cytotoxic in this study and were capable of the induction and activation of p53.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Nanoestruturas/toxicidade , Nanotubos de Carbono/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular , Inflamação/patologia , Macrófagos Alveolares/metabolismo , Camundongos , Camundongos Knockout , Estresse Oxidativo/efeitos dos fármacos , Titânio/administração & dosagem , Titânio/toxicidade , Proteína Supressora de Tumor p53/genética
4.
Part Fibre Toxicol ; 11: 23, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24885771

RESUMO

BACKGROUND: Although major concerns exist regarding the potential consequences of human exposure to nanoparticles (NP), no human toxicological data is currently available. To address this issue, we took welders, who present various adverse respiratory outcomes, as a model population of occupational exposure to NP.The aim of this study was to evaluate if welding fume-issued NP could be responsible, at least partially, in the lung alterations observed in welders. METHODS: A combination of imaging and material science techniques including ((scanning) transmission electron microscopy ((S)TEM), energy dispersive X-ray (EDX), and X-ray microfluorescence (µXRF)), was used to characterize NP content in lung tissue from 21 welders and 21 matched control patients. Representative NP were synthesized, and their effects on macrophage inflammatory secretome and migration were evaluated, together with the effect of this macrophage inflammatory secretome on human lung primary fibroblasts differentiation. RESULTS: Welding-related NP (Fe, Mn, Cr oxides essentially) were identified in lung tissue sections from welders, in macrophages present in the alveolar lumen and in fibrous regions. In vitro macrophage exposure to representative NP (Fe2O3, Fe3O4, MnFe2O4 and CrOOH) induced the production of a pro-inflammatory secretome (increased production of CXCL-8, IL-1ß, TNF-α, CCL-2, -3, -4, and to a lesser extent IL-6, CCL-7 and -22), and all but Fe3O4 NP induce an increased migration of macrophages (Boyden chamber). There was no effect of NP-exposed macrophage secretome on human primary lung fibroblasts differentiation. CONCLUSIONS: Altogether, the data reported here strongly suggest that welding-related NP could be responsible, at least in part, for the pulmonary inflammation observed in welders. These results provide therefore the first evidence of a link between human exposure to NP and long-term pulmonary effects.


Assuntos
Pulmão/patologia , Nanopartículas Metálicas/toxicidade , Doenças Profissionais/patologia , Óxidos/toxicidade , Soldagem , Idoso , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Exposição por Inalação , Pulmão/metabolismo , Macrófagos/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Exposição Ocupacional , Fumar/efeitos adversos , Fumar/patologia , Fixação de Tecidos
5.
Am J Respir Cell Mol Biol ; 48(3): 354-63, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23239492

RESUMO

Exposure to titanium dioxide (TiO2) nanoparticles (NPs) is associated with lung remodeling, but the underlying mechanisms are unknown. Matrix metalloprotease (MMP)-1 is an important actor in matrix homeostasis and could therefore participate in TiO2 NP effects. Our aim was to evaluate the effects of TiO2 NPs on MMP-1 expression and activity in lung pulmonary fibroblasts and to understand the underlying mechanisms and assess the importance of the physicochemical characteristics of the particles in these effects. Human pulmonary fibroblasts (MRC-5 cell line and primary cells) were exposed to 10 or 100 µg/cm(2) TiO2 (two anatases, two anatase/rutile mix, one rutile NP, and one micrometric) and carbon black (CB) NPs for 6 to 48 hours. We examined cell viability, MMP-1 expression and activity, and the implication of oxidative stress, transforming growth factor (TGF)-ß, extracellular MMP inducer, and IL-1ß in MMP-1 expression. All TiO2 NPs induced MMP-1 (mRNA and protein expression), repression of procollagen-1, and α-actin expression, but only the two anatase/rutile mix induced MMP-1 activity. Micrometric TiO2 had smaller effects than TiO2 NPs, and CB NPs did not induce MMP-1. MMP-1 induction by TiO2 NPs was not related to TGF-ß, oxidative stress, or EMPRIN expression but was related to IL-1ß expression, which partly drives MMP-1 induction by two TiO2 NPs (one anatase/rutile mix and the rutile one). Taken together, our results show that TiO2 NPs are potent inducers and regulators of MMP-1 expression and activity, partly via an IL-1ß-dependent mechanism. This may explain TiO2 lung remodeling effects.


Assuntos
Fibroblastos/efeitos dos fármacos , Interleucina-1beta/metabolismo , Pulmão/efeitos dos fármacos , Metaloproteinase 1 da Matriz/biossíntese , Nanopartículas Metálicas/efeitos adversos , Titânio/farmacologia , Actinas/genética , Actinas/metabolismo , Basigina/genética , Basigina/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Indução Enzimática/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Interleucina-1beta/genética , Pulmão/enzimologia , Pulmão/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Pró-Colágeno/genética , Pró-Colágeno/metabolismo , Fuligem/farmacologia , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
6.
BMC Pulm Med ; 12: 38, 2012 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-22849372

RESUMO

BACKGROUND: Titanium dioxide (TiO2) and carbon black (CB) nanoparticles (NPs) have biological effects that could aggravate pulmonary emphysema. The aim of this study was to evaluate whether pulmonary administration of TiO2 or CB NPs in rats could induce and/or aggravate elastase-induced emphysema, and to investigate the underlying molecular mechanisms. METHODS: On day 1, Sprague-Dawley rats were intratracheally instilled with 25 U kg⁻¹ pancreatic porcine elastase or saline. On day 7, they received an intratracheal instillation of TiO2 or CB (at 100 and 500 µg) dispersed in bovine serum albumin or bovine serum albumin alone. Animals were sacrificed at days 8 or 21, and bronchoalveolar lavage (BAL) cellularity, histological analysis of inflammation and emphysema, and lung mRNA expression of heme oxygenase-1 (HO-1), interleukin-1ß (IL-1ß), macrophage inflammatory protein-2, monocyte chemotactic protein-1, and matrix metalloprotease (MMP)-1, and -12 were measured. In addition, pulmonary MMP-12 expression was also analyzed at the protein level by immunohistochemistry. RESULTS: TiO2 NPs per se did not modify the parameters investigated, but CB NPs increased perivascular/peribronchial infiltration, and macrophage MMP-12 expression, without inducing emphysema. Elastase administration increased BAL cellularity, histological inflammation, HO-1, IL-1ß and macrophage MMP-12 expression and induced emphysema. Exposure to TiO2 NPs did not modify pulmonary responses to elastase, but exposure to CB NPs aggravated elastase-induced histological inflammation without aggravating emphysema. CONCLUSIONS: TiO2 and CB NPs did not aggravate elastase-induced emphysema. However, CB NPs induced histological inflammation and MMP-12 mRNA and protein expression in macrophages.


Assuntos
Nanopartículas/efeitos adversos , Elastase Pancreática/efeitos adversos , Enfisema Pulmonar/induzido quimicamente , Enfisema Pulmonar/patologia , Fuligem/efeitos adversos , Titânio/efeitos adversos , Animais , Lavagem Broncoalveolar , Heme Oxigenase-1/metabolismo , Interleucina-1beta/metabolismo , Intubação Intratraqueal , Masculino , Metaloproteinase 12 da Matriz/metabolismo , Modelos Animais , Nanopartículas/administração & dosagem , Pneumonia/induzido quimicamente , Pneumonia/metabolismo , Pneumonia/patologia , Enfisema Pulmonar/metabolismo , Ratos , Ratos Sprague-Dawley , Fuligem/administração & dosagem , Titânio/administração & dosagem
7.
Nanotoxicology ; 6(5): 501-13, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21995316

RESUMO

Titanium dioxide nanoparticles (TiO(2)-NPs) are produced in large quantities, raising concerns about their impact for human health. The aim of this study was to deeply characterize TiO(2)-NPs genotoxic potential to lung cells, and to link genotoxicity to physicochemical characteristics, e.g., size, specific surface area, crystalline phase. A549 cells were exposed to a panel of TiO(2)-NPs with diameters ranging from 12 to 140 nm, either anatase or rutile. A set of complementary techniques (comet and micronucleus assays, gamma-H2AX immunostaining, 8-oxoGuanine analysis, H2-DCFDA, glutathione content, antioxidant enzymes activities) allowed us to demonstrate that small and spherical TiO(2)-NPs, both anatase and rutile, induce single-strand breaks and oxidative lesions to DNA, together with a general oxidative stress. Additionally we show that these NPs impair cell ability to repair DNA, by inactivation of both NER and BER pathways. This study thus confirms the genotoxic potential of TiO(2)-NPs, which may preclude their mutagenicity and carcinogenicity.


Assuntos
Dano ao DNA , Reparo do DNA , Nanopartículas/toxicidade , Titânio/toxicidade , Análise de Variância , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Humanos , Testes para Micronúcleos , Nanopartículas/química , Estresse Oxidativo/efeitos dos fármacos , Titânio/química
8.
Part Fibre Toxicol ; 8: 3, 2011 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-21255417

RESUMO

BACKGROUND: carbon nanotubes (CNT) can have adverse effects on health. Therefore, minimizing the risk associated with CNT exposure is of crucial importance. The aim of this work was to evaluate if coating multi-walled CNT (MWCNT) with polymers could modify their toxicity, thus representing a useful strategy to decrease adverse health effects of CNT. We used industrially-produced MWCNT uncoated (NT1) or coated (50/50 wt%) with acid-based (NT2) or polystyrene-based (NT3) polymer, and exposed murine macrophages (RAW 264.7 cell line) or Balb/c mice by intratracheal administration. Biological experiments were performed both in vitro and in vivo, examining time- and dose-dependent effects of CNT, in terms of cytotoxicity, expression of genes and proteins related to oxidative stress, inflammation and tissue remodeling, cell and lung tissue morphology (optical and transmission electron microscopy), and bronchoalveolar lavage fluid content analysis. RESULTS: extensive physico-chemical characterization of MWCNT was performed, and showed, although similar dimensions for the 3 MWCNT, a much smaller specific surface area for NT2 and NT3 as compared to NT1 (54.1, 34 and 227.54 m(2)/g respectively), along with different surface characteristics. MWCNT-induced cytotoxicity, oxidative stress, and inflammation were increased by acid-based and decreased by polystyrene-based polymer coating both in vitro in murine macrophages and in vivo in lung of mice monitored for 6 months. CONCLUSIONS: these results demonstrate that coating CNT with polymers, without affecting their intrinsic structure, may constitute a useful strategy for decreasing CNT toxicity, and may hold promise for improving occupational safety and that of general the user.


Assuntos
Lesão Pulmonar Aguda/prevenção & controle , Materiais Biocompatíveis , Nanotubos de Carbono/química , Exposição Ocupacional/efeitos adversos , Poliestirenos/química , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Exposição por Inalação , Intubação Intratraqueal , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Macrófagos/ultraestrutura , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/toxicidade , Nanotubos de Carbono/ultraestrutura , Doenças Profissionais , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética
9.
Environ Sci Technol ; 43(21): 8423-9, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19924979

RESUMO

Ecotoxicological effects of nanoparticles (NP) are still poorly documented while their commercialization for industrial and household applications increases. The aim of this study was to evaluate the influence of physicochemical characteristics on metal oxide NP and carbon nanotubes toxicological effects toward bacteria. Two strains of bacteria, Cupriavidus metallidurans CH34 and Escherichia coli MG1655 were exposed to TiO(2) or Al(2)O(3) NP or to multiwalled-carbon nanotubes (MWCNT). Particular attention was paid on optimizing NP dispersion to obtain nonagglomerated suspensions. Our results show that NP toxicity depends on their chemical composition, size, surface charge, and shape but not on their crystalline phase. MWCNT toxicity does not depend on their purity. Toxicity also depends on the bacterial strain: E. coli MG1655 is sensitive to NP, whereas C. metallidurans CH34 is not. Interestingly, NP are accumulated in both bacterial strains, and association between NP and bacteria is necessary for bacterial death to occur. NP may then represent a danger for the environment, causing the disappearance of some sensitive bacterial strains such as E. coli MG1655, but also being mobilized by nonsensitive strains such as C. metallidurans CH34 and transported through the whole ecosystem.


Assuntos
Bactérias/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Nanotubos de Carbono/química , Nanotubos de Carbono/toxicidade , Óxidos/toxicidade , Tamanho da Partícula , Bactérias/citologia , Bactérias/ultraestrutura , Meios de Cultura , Exposição Ambiental/análise , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Nanopartículas Metálicas/microbiologia , Nanopartículas Metálicas/ultraestrutura , Viabilidade Microbiana/efeitos dos fármacos , Nanotubos de Carbono/microbiologia , Óxidos/química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...