Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 10: 362, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30467476

RESUMO

Resting-state fMRI studies demonstrated temporally synchronous fluctuations in brain activity among ensembles of brain regions, suggesting the existence of intrinsic functional networks. A spatial match between some of the resting-state networks and regional brain activation during cognitive tasks has been noted, suggesting that resting-state networks support particular cognitive abilities. However, the spatial match and predictive value of any resting-state network and regional brain activation during episodic memory is only poorly understood. In order to address this research gap, we obtained fMRI acquired both during rest and a face-name association task in 38 healthy elderly subjects. In separate independent component analyses, networks of correlated brain activity during rest or the episodic memory task were identified. For the independent components identified for task-based fMRI, the design matrix of successful encoding or retrieval trials was regressed against the time course of each of the component to identify significantly activated networks. Spatial regression was used to assess the match of resting-state networks against those related to successful memory encoding or retrieval. We found that resting-state networks covering the medial temporal, middle temporal, and frontal areas showed increased activity during successful encoding. Resting-state networks located within posterior brain regions showed increased activity during successful recognition. However, the level of resting-state network connectivity was not predictive of the task-related activity in these networks. These results suggest that a circumscribed number of functional networks detectable during rest become engaged during successful episodic memory. However, higher intrinsic connectivity at rest may not translate into higher network expression during episodic memory.

2.
Alzheimers Res Ther ; 10(1): 28, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29510747

RESUMO

BACKGROUND: Recent evidence derived from functional magnetic resonance imaging (fMRI) studies suggests that functional hubs (i.e., highly connected brain regions) are important for mental health. We found recently that global connectivity of a hub in the left frontal cortex (LFC connectivity) is associated with relatively preserved memory abilities and higher levels of protective factors (education, IQ) in normal aging and Alzheimer's disease. These results suggest that LFC connectivity supports reserve capacity, alleviating memory decline. An open question, however, is why LFC connectivity is beneficial and supports memory function in the face of neurodegeneration. We hypothesized that higher LFC connectivity is associated with enhanced efficiency in connected major networks involved in episodic memory. We further hypothesized that higher LFC-related network efficiency predicts higher memory abilities. METHODS: We assessed fMRI during a face-name association learning task performed by 26 healthy, cognitively normal elderly participants. Using beta-series correlation analysis, we computed task-related LFC connectivity to key memory networks, including the default mode network (DMN) and dorsal attention network (DAN). Network efficiency within the DMN and DAN was estimated by the graph theoretical small-worldness statistic. We applied linear regression analyses to test the association between LFC connectivity with the DMN/DAN and small-worldness of these networks. Mediation analysis was applied to test LFC connectivity to the DMN and DAN as a mediator of the association between education and higher DMN and DAN small-worldness. Last, we tested network small-worldness as a predictor of memory performance. RESULTS: We found that higher LFC connectivity to the DMN and DAN during successful memory encoding and recognition was associated with higher small-worldness of those networks. Higher task-related LFC connectivity mediated the association between education and higher small-worldness in the DMN and DAN. Further, higher small-worldness of these networks predicted better performance in the memory task. CONCLUSIONS: The present results suggest that higher education-related LFC connectivity to key memory networks during a memory task is associated with higher network efficiency and thus enhanced reserve of memory abilities in aging.


Assuntos
Envelhecimento/patologia , Mapeamento Encefálico , Lobo Frontal/diagnóstico por imagem , Lateralidade Funcional/fisiologia , Vias Neurais/diagnóstico por imagem , Idoso , Idoso de 80 Anos ou mais , Aprendizagem por Associação/fisiologia , Atenção/fisiologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Oxigênio/sangue , Estimulação Luminosa
3.
Front Aging Neurosci ; 9: 264, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824423

RESUMO

Reserve refers to the phenomenon of relatively preserved cognition in disproportion to the extent of neuropathology, e.g., in Alzheimer's disease. A putative functional neural substrate underlying reserve is global functional connectivity of the left lateral frontal cortex (LFC, Brodmann Area 6/44). Resting-state fMRI-assessed global LFC-connectivity is associated with protective factors (education) and better maintenance of memory in mild cognitive impairment (MCI). Since the LFC is a hub of the fronto-parietal control network that regulates the activity of other networks, the question arises whether LFC-connectivity to specific networks rather than the whole-brain may underlie reserve. We assessed resting-state fMRI in 24 MCI and 16 healthy controls (HC) and in an independent validation sample (23 MCI/32 HC). Seed-based LFC-connectivity to seven major resting-state networks (i.e., fronto-parietal, limbic, dorsal-attention, somatomotor, default-mode, ventral-attention, visual) was computed, reserve was quantified as residualized memory performance after accounting for age and hippocampal atrophy. In both samples of MCI, LFC-activity was anti-correlated with the default-mode network (DMN), but positively correlated with the dorsal-attention network (DAN). Greater education predicted stronger LFC-DMN-connectivity (anti-correlation) and LFC-DAN-connectivity. Stronger LFC-DMN and LFC-DAN-connectivity each predicted higher reserve, consistently in both MCI samples. No associations were detected for LFC-connectivity to other networks. These novel results extend our previous findings on global functional connectivity of the LFC, showing that LFC-connectivity specifically to the DAN and DMN, two core memory networks, enhances reserve in the memory domain in MCI.

4.
J Alzheimers Dis ; 59(4): 1381-1392, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28731448

RESUMO

Reserve in aging and Alzheimer's disease (AD) is defined as maintaining cognition at a relatively high level in the presence of neurodegeneration, an ability often associated with higher education among other life factors. Recent evidence suggests that higher resting-state functional connectivity within the frontoparietal control network, specifically the left frontal cortex (LFC) hub, contributes to higher reserve. Following up these previous resting-state fMRI findings, we probed memory-task related functional connectivity of the LFC hub as a neural substrate of reserve. In elderly controls (CN, n = 37) and patients with mild cognitive impairment (MCI, n = 17), we assessed global connectivity of the LFC hub during successful face-name association learning, using generalized psychophysiological interaction analyses. Reserve was quantified as residualized memory performance, accounted for gender and proxies of neurodegeneration (age, hippocampus atrophy, and APOE genotype). We found that greater education was associated with higher LFC-connectivity in both CN and MCI during successful memory. Furthermore, higher LFC-connectivity predicted higher residualized memory (i.e., reserve). These results suggest that higher LFC-connectivity contributes to reserve in both healthy and pathological aging.


Assuntos
Envelhecimento/patologia , Disfunção Cognitiva/patologia , Lobo Frontal/patologia , Lateralidade Funcional/fisiologia , Memória/fisiologia , Rede Nervosa/patologia , Idoso , Idoso de 80 Anos ou mais , Apolipoproteínas E/genética , Mapeamento Encefálico , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Face , Feminino , Lobo Frontal/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Nomes , Rede Nervosa/diagnóstico por imagem , Vias Neurais/diagnóstico por imagem , Reconhecimento Visual de Modelos/fisiologia , Fatores Sexuais
5.
Alzheimers Dement ; 13(3): 225-235, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27432800

RESUMO

INTRODUCTION: White matter hyperintensities (WMHs) increase the risk of Alzheimer's disease (AD). Whether WMHs are associated with the decline of functional neural networks in AD is debated. METHOD: Resting-state functional magnetic resonance imaging and WMH were assessed in 78 subjects with increased amyloid levels on AV-45 positron emission tomography (PET) in different clinical stages of AD. We tested the association between WMH volume in major atlas-based fiber tract regions of interest (ROIs) and changes in functional connectivity (FC) between the tracts' projection areas within the default mode network (DMN). RESULTS: WMH volume within the inferior fronto-occipital fasciculus (IFOF) was the highest among all tract ROIs and associated with reduced FC in IFOF-connected DMN areas, independently of global AV-45 PET. Higher AV-45 PET contributed to reduced FC in IFOF-connected, temporal, and parietal DMN areas. CONCLUSIONS: High fiber tract WMH burden is associated with reduced FC in connected areas, thus adding to the effects of amyloid pathology on neuronal network function.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Mapeamento Encefálico , Rede Nervosa/patologia , Substância Branca/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Substância Branca/diagnóstico por imagem
6.
Neurobiol Aging ; 45: 43-49, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27459924

RESUMO

Resting-state functional connectivity (FC) is altered in Alzheimer's disease (AD) but its predictive value for episodic memory impairment is debated. Here, we aimed to assess whether resting-state FC in core brain regions activated during memory-task functional magnetic resonance imaging is altered and predictive of memory performance in AD and amnestic mild cognitive impairment (aMCI). Twenty-three elderly cognitively healthy controls (HC), 76 aMCI subjects, and 19 AD dementia patients were included. We computed resting-state FC between 18 meta-analytically determined peak coordinates of brain activation during successful memory retrieval. Higher FC between the parahippocampus, parietal cortex, and the middle frontal gyrus was observed in both AD and mild cognitive impairment compared to HC (false-discovery rate-corrected p < 0.05). The increase in FC between the parahippocampus and middle frontal gyrus was associated with reduced episodic memory in aMCI, independent of amyloid-beta positron emission tomography binding and apolipoprotein E ε4-carrier status. In conclusion, increased parahippocampal-prefrontal FC is predictive of impaired episodic memory in aMCI and may reflect a dysfunctional change within the episodic memory-related neural network.


Assuntos
Disfunção Cognitiva/psicologia , Memória/fisiologia , Descanso/fisiologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Cognição/fisiologia , Disfunção Cognitiva/diagnóstico por imagem , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Memória Episódica , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Valor Preditivo dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...