Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci ; 552020.
Artigo em Inglês | MEDLINE | ID: mdl-34121767

RESUMO

In this work, we perform high accuracy measurements of thermophysical properties for the National Institute of Standards and Technology standard reference material for 316L stainless steel. As these properties can be sensitive to small changes in elemental composition even within the allowed tolerances for an alloy class, by selecting a publicly available standard reference material for study our results are particularly useful for the validation of multiphysics models of industrial metal processes. An ohmic pulse-heating system was used to directly measure the electrical resistivity, enthalpy, density, and thermal expansion as functions of temperature. This apparatus applies high current pulses to heat wire-shaped samples from room temperature to metal vaporization. The great advantage of this particular pulse-heating apparatus is the very short experimental duration of 50 µs, which is faster than the collapse of the liquid wire due to gravitational forces, as well as that it prevents any chemical reactions of the hot liquid metal with its surroundings. Additionally, a differential scanning calorimeter was used to measure specific heat capacity from room temperature to around 1400 K. All data are accompanied by uncertainties according to the guide to the expression of uncertainty in measurement.

2.
Phys Rev Appl ; 13(2)2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34179224

RESUMO

The relationship between real powder distributions and optical coupling is a critical building block for developing a deeper physical understanding of laser-additive manufacturing and for creating more reliable and accurate models for predictable manufacturing. Laser-light absorption by a metal powder is distinctly different from that of a solid material, as it is impacted by additional parameters, such as particle size, shape distribution, and packing. Here, we use x-ray computed tomography to experimentally determine these parameters in a thinly spread austenitic stainless-steel powder on a metal substrate, and we combine these results with optical absorptance measurements during a 1 ms stationary laser-light exposure to simulate the additive-manufacturing process. Within the thinly spread powder layer, the particle volume fraction changes continuously from near zero at the powder surface to a peak value of 0.72 at a depth of 235 µm, with the most rapid increase taking place in the first 100 µm. The relationship between this particle volume fraction gradient and optical absorptance is investigated using an analytical model, which shows that depth-averaged absorptance measurements can measure the predicted average value, but will fail to capture local effects that result from a changing powder density. The time-averaged absorptance remains at levels between 0.67 and 0.80 across a two orders of magnitude range in laser power, which is significantly higher than that observed in solid stainless-steel experiments. The dynamic behavior of the absorptance, however, reveals physical phenomena, including oxidation, melting, and vapor cavity (keyhole) formation, as well as quantifying the effect of these on the absorbed energy.

3.
Phys Rev Appl ; 10(4)2018.
Artigo em Inglês | MEDLINE | ID: mdl-32118095

RESUMO

High-irradiance lasers incident on metal surfaces create a complex, dynamic process through which the metal can rapidly change from highly reflective to strongly absorbing. Absolute knowledge of this process underpins important industrial laser processes such as laser welding, cutting, and metal additive manufacturing. Determining the time-dependent absorptance of the laser light by a material is important, not only for gaining a fundamental understanding of the light-matter interaction but also for improving process design in manufacturing. Measurements of the dynamic optical absorptance are notoriously difficult due to the rapidly changing nature of the absorbing medium. These data are also of vital importance to process modelers, whose complex simulations need reliable, accurate input data; yet, there are very few available. In this work, we measure the time-dependent, reflected light during a 10-ms laser spot weld using an integrating-sphere apparatus. From this, we calculate the dynamic absorptance for 1070-nm-wavelength light incident on 316L stainless steel. The time resolution of our experiment (less than 1 µs) allows the determination of the precise conditions under which several important physical phenomena occur, such as melt and keyhole formation. The average absorptances determined optically are compared with calorimetrically determined values, and it is found that the calorimeter severely underestimates the absorbed energy due to mass lost during the spot weld. Weld-nugget cross sections are also presented to verify our interpretation of the optical results, as well as to provide experimental data for weld-model validation.

4.
Appl Opt ; 56(34): 9596-9600, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29216078

RESUMO

We have demonstrated the calibration of a thermal power meter against a radiation pressure power meter in the range of 20 kW in a manufacturing test environment. The results were compared to a traditional calorimeter-based laboratory calibration undertaken at the National Institute of Standards and Technology. The results are reported, and the effects of nonideal conditions typical of measurements in low-stability environments are discussed.

5.
J Magn Reson ; 225: 58-61, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23143009

RESUMO

A technique for determining the size of metallic nanoparticles incorporated into a ceramic is demonstrated using conduction electron paramagnetic resonance (CEPR). The resonances associated with palladium nanoparticles in a perovskite material are identified and studied as a function of temperature. As this line shape changes with temperature, the point at which the skin depth of the palladium is the same as the size of the nanoparticles is clearly identified due to a microwave saturation effect. This allows for a determination of their average size, which, in this case is 75±20nm. This is the first example of CEPR being used to determine metallic nanoparticle size in a technologically relevant, embedded in a non EPR-inert material system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...