Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Metab ; 6(10): 1103-1112, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-29031712

RESUMO

OBJECTIVE: The mitochondrial uncoupling agent 2,4-dinitrophenol (DNP), historically used as a treatment for obesity, is known to cross the blood-brain-barrier, but its effects on central neural circuits controlling body weight are largely unknown. As hypothalamic melanocortin neuropeptide Y/agouti-related protein (NPY/AgRP) and pro-opiomelanocortin (POMC) neurons represent key central regulators of food intake and energy expenditure we investigated the effects of DNP on these neurons, food intake and energy expenditure. METHOD: C57BL/6 and melanocortin-4 receptor (MC4R) knock-out mice were administered DNP intracerebroventricularly (ICV) and the metabolic changes were characterized. The specific role of NPY and POMC neurons and the ionic mechanisms mediating the effects of uncoupling were examined with in vitro electrophysiology performed on NPY hrGFP or POMC eGFP mice. RESULTS: Here we show DNP-induced differential effects on melanocortin neurons including inhibiting orexigenic NPY and activating anorexigenic POMC neurons through independent ionic mechanisms coupled to mitochondrial function, consistent with an anorexigenic central effect. Central administration of DNP induced weight-loss, increased BAT thermogenesis and browning of white adipose tissue, and decreased food intake, effects that were absent in MC4R knock-out mice and blocked by the MC4R antagonist, AgRP. CONCLUSION: These data show a novel central anti-obesity mechanism of action of DNP and highlight the potential for selective melanocortin mitochondrial uncoupling to target metabolic disorders.


Assuntos
2,4-Dinitrofenol/farmacologia , Neuropeptídeo Y/metabolismo , Pró-Opiomelanocortina/metabolismo , Tecido Adiposo Marrom/metabolismo , Animais , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Masculino , Melanocortinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Neurônios/efeitos dos fármacos , Obesidade/metabolismo , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina/fisiologia , Termogênese/fisiologia , Proteína Desacopladora 1/efeitos dos fármacos , Proteína Desacopladora 1/fisiologia , Redução de Peso
2.
Biol Psychiatry ; 81(9): 797-806, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26826876

RESUMO

BACKGROUND: There is increasing evidence that the pathological overeating underlying some forms of obesity is compulsive in nature and therefore contains elements of an addictive disorder. However, direct physiological evidence linking obesity to synaptic plasticity akin to that occurring in addiction is lacking. We sought to establish whether the propensity to diet-induced obesity (DIO) is associated with addictive-like behavior, as well as synaptic impairments in the nucleus accumbens core considered hallmarks of addiction. METHODS: Sprague Dawley rats were allowed free access to a palatable diet for 8 weeks then separated by weight gain into DIO-prone and DIO-resistant subgroups. Access to palatable food was then restricted to daily operant self-administration sessions using fixed ratio 1, 3, and 5 and progressive ratio schedules. Subsequently, nucleus accumbens brain slices were prepared, and we tested for changes in the ratio between α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) and N-methyl-D-aspartate currents and the ability to exhibit long-term depression. RESULTS: We found that propensity to develop DIO is linked to deficits in the ability to induce long-term depression in the nucleus accumbens, as well as increased potentiation at these synapses as measured by AMPA/N-methyl-D-aspartate currents. Consistent with these impairments, we observed addictive-like behavior in DIO-prone rats, including 1) heightened motivation for palatable food; 2) excessive intake; and 3) increased food seeking when food was unavailable. CONCLUSIONS: Our results show overlap between the propensity for DIO and the synaptic changes associated with facets of addictive behavior, supporting partial coincident neurological underpinnings for compulsive overeating and drug addiction.


Assuntos
Comportamento Aditivo/fisiopatologia , Dieta , Plasticidade Neuronal , Núcleo Accumbens/fisiologia , Obesidade/fisiopatologia , Animais , Condicionamento Operante/fisiologia , Comportamento Alimentar , Ácido Glutâmico/fisiologia , Depressão Sináptica de Longo Prazo , Masculino , Ratos , Ratos Sprague-Dawley , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...