Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
AIMS Biophys ; 3(1): 195-208, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28492064

RESUMO

The human homolog of Drosophila ecdysoneless protein (ECD) is a p53 binding protein that stabilizes and enhances p53 functions. Homozygous deletion of mouse Ecd is early embryonic lethal and Ecd deletion delays G1-S cell cycle progression. Importantly, ECD directly interacts with the Rb tumor suppressor and competes with the E2F transcription factor for binding to Rb. Further studies demonstrated ECD is overexpressed in breast and pancreatic cancers and its overexpression correlates with poor patient survival. ECD overexpression together with Ras induces cellular transformation through upregulation of autophagy. Recently we demonstrated that CK2 mediated phosphorylation of ECD and interaction with R2TP complex are important for its cell cycle regulatory function. Considering that ECD is a component of multiprotein complexes and its crystal structure is unknown, we characterized ECD structure by circular dichroism measurements and sequence analysis software. These analyses suggest that the majority of ECD is composed of α-helices. Furthermore, small angle X-ray scattering (SAXS) analysis showed that deletion fragments, ECD(1-432) and ECD(1-534), are both well-folded and reveals that the first 400 residues are globular and the next 100 residues are in an extended cylindrical structure. Taking all these results together, we speculate that ECD acts like a structural hub or scaffolding protein in its association with its protein partners. In the future, the hypothetical model presented here for ECD will need to be tested experimentally.

3.
Mutat Res ; 753(2): 131-146, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23969025

RESUMO

Cellular nucleotide pools are often contaminated by base analog nucleotides which interfere with a plethora of biological reactions, from DNA and RNA synthesis to cellular signaling. An evolutionarily conserved inosine triphosphate pyrophosphatase (ITPA) removes the non-canonical purine (d)NTPs inosine triphosphate and xanthosine triphosphate by hydrolyzing them into their monophosphate form and pyrophosphate. Mutations in the ITPA orthologs in model organisms lead to genetic instability and, in mice, to severe developmental anomalies. In humans there is genetic polymorphism in ITPA. One allele leads to a proline to threonine substitution at amino acid 32 and causes varying degrees of ITPA deficiency in tissues and plays a role in patients' response to drugs. Structural analysis of this mutant protein reveals that the protein is destabilized by the formation of a cavity in its hydrophobic core. The Pro32Thr allele is thought to cause the observed dominant negative effect because the resulting active enzyme monomer targets both homo- and heterodimers to degradation.


Assuntos
Pirofosfatases/metabolismo , Animais , Escherichia coli/enzimologia , Humanos , Camundongos , Modelos Moleculares , Farmacogenética , Polimorfismo Genético , Pirofosfatases/química , Pirofosfatases/deficiência , Pirofosfatases/genética , Leveduras/enzimologia
4.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 6): 1062-72, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23695251

RESUMO

The toolbox for computational protein crystallography is full of easy-to-use applications for the routine solution and refinement of periodic diffraction data sets and protein structures. There is a gap in the available software when it comes to aperiodic crystallographic data. Current protein crystallography software cannot handle modulated data, and small-molecule software for aperiodic crystallography cannot work with protein structures. To adapt software for modulated protein data requires training data to test and debug the changed software. Thus, a comprehensive training data set consisting of atomic positions with associated modulation functions and the modulated structure factors packaged as both a three-dimensional supercell and as a modulated structure in (3+1)D superspace has been created. The (3+1)D data were imported into Jana2006; this is the first time that this has been performed for protein data.


Assuntos
Proteínas/química , Software , Difração de Raios X/métodos , Simulação por Computador
5.
J Struct Biol ; 182(3): 197-208, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23528839

RESUMO

Inosine triphosphate pyrophosphatase (ITPA), a key enzyme involved in maintaining the purity of cellular nucleoside triphosphate pools, specifically recognizes inosine triphosphate and xanthosine triphosphate (including the deoxyribose forms) and detoxifies them by catalyzing the hydrolysis of a phosphoanhydride bond, releasing pyrophosphate. This prevents their inappropriate use as substrates in enzymatic reactions utilizing (d)ATP or (d)GTP. A human genetic polymorphism leads to the substitution of Thr for Pro32 (P32T) and causes ITPA deficiency in erythrocytes, with heterozygotes having on average 22.5% residual activity, and homozygotes having undetectable activity. This polymorphism has been implicated in modulating patients' response to mercaptopurines and ribavirin. Human fibroblasts containing this variant have elevated genomic instability upon treatment with base analogs. We find that the wild-type and P32T forms are dimeric in solution and in the crystal structure. This abolishes the previous speculation that the P32T change disrupts dimerization as a mechanism of inactivation. The only difference in structure from the wild-type protein is that the area surrounding Thr32 is disrupted. Phe31 is flipped from the hydrophobic core out into the solvent, leaving a hole in the hydrophobic core of the protein which likely accounts for the reduced thermal stability of P32T ITPA and ultimately leads to its susceptibility to degradation in human cells. Circular dichroism and thermal denaturation studies confirm these structural results. We propose that the dimer of P32T variant subunit with wild-type subunit is degraded in cells similarly to the P32T homodimer explaining the level of loss of ITPA activity in heterozygotes.


Assuntos
Instabilidade Genômica , Pirofosfatases/genética , Relação Estrutura-Atividade , Dicroísmo Circular , Eritrócitos/citologia , Eritrócitos/metabolismo , Heterozigoto , Humanos , Interações Hidrofóbicas e Hidrofílicas , Mutação , Nucleotídeos/genética , Polimorfismo Genético , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/deficiência , Pirofosfatases/metabolismo
6.
Mol Immunol ; 49(4): 628-39, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22169163

RESUMO

The current model of antigen assembly with major histocompatibility complex (MHC) class I molecules posits that interactions between the tapasin N-terminal immunoglobulin (Ig)-like domain and the MHC class I peptide-binding groove permit tapasin to regulate antigen selection. Much less is known regarding interactions that might involve the tapasin C-terminal Ig-like domain. Additionally, the tapasin transmembrane/cytoplasmic region enables tapasin to bridge the MHC class I molecule to the transporter associated with antigen processing (TAP). In this investigation, we made use of two tapasin mutants to determine the relative contribution of the tapasin C-terminal Ig-like domain and the tapasin transmembrane/cytoplasmic region to the assembly of MHC class I molecules. Deletion of a loop within the tapasin C-terminal Ig-like domain (Δ334-342) prevented tapasin association with the MHC class I molecule K(d). Although tapasin Δ334-342 did not increase the efficiency of K(d) folding, K(d) surface expression was enhanced on cells expressing this mutant relative to tapasin-deficient cells. In contrast to tapasin Δ334-342, a soluble tapasin mutant lacking the transmembrane/cytoplasmic region retained the ability to bind to K(d) molecules, but did not facilitate K(d) surface expression. Furthermore, when soluble tapasin and tapasin Δ334-342 were co-expressed, soluble tapasin had a dominant negative effect on the folding and surface expression of not only K(d), but also D(b) and K(b). In addition, our molecular modeling of the MHC class I-tapasin interface revealed novel potential interactions involving tapasin residues 334-342. Together, these findings demonstrate that the tapasin C-terminal and transmembrane/cytoplasmic regions are critical to tapasin's capacity to associate effectively with the MHC class I molecule.


Assuntos
Citoplasma/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Apresentação de Antígeno , Complexo Antígeno-Anticorpo/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Imunoglobulinas/metabolismo , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Knockout , Modelos Moleculares , Mutação , Ligação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estrutura Terciária de Proteína
7.
J Mol Biol ; 392(3): 602-13, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19631656

RESUMO

Sanitization of the cellular nucleotide pools from mutagenic base analogues is necessary for the accuracy of transcription and replication of genetic material and plays a substantial role in cancer prevention. The undesirable mutagenic, recombinogenic, and toxic incorporation of purine base analogues [i.e., ITP, dITP, XTP, dXTP, or 6-hydroxylaminopurine (HAP) deoxynucleoside triphosphate] into nucleic acids is prevented by inosine triphosphate pyrophosphatase (ITPA). The ITPA gene is a highly conserved, moderately expressed gene. Defects in ITPA orthologs in model organisms cause severe sensitivity to HAP and chromosome fragmentation. A human polymorphic allele, 94C-->A, encodes for the enzyme with a P32T amino acid change and leads to accumulation of non-hydrolyzed ITP. ITPase activity is not detected in erythrocytes of these patients. The P32T polymorphism has also been associated with adverse sensitivity to purine base analogue drugs. We have found that the ITPA-P32T mutant is a dimer in solution, as is wild-type ITPA, and has normal ITPA activity in vitro, but the melting point of ITPA-P32T is 5 degrees C lower than that of wild-type. ITPA-P32T is also fully functional in vivo in model organisms as determined by a HAP mutagenesis assay and its complementation of a bacterial ITPA defect. The amount of ITPA protein detected by Western blot is severely diminished in a human fibroblast cell line with the 94C-->A change. We propose that the P32T mutation exerts its effect in certain human tissues by cumulative effects of destabilization of transcripts, protein stability, and availability.


Assuntos
Resistência a Medicamentos/genética , Mutação , Polimorfismo Genético , Pirofosfatases , Sequência de Aminoácidos , Animais , Linhagem Celular , Estabilidade Enzimática , Fibroblastos/citologia , Fibroblastos/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Desnaturação Proteica , Multimerização Proteica , Pirofosfatases/química , Pirofosfatases/genética , Pirofosfatases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...