Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell Rep ; 43(5): 114211, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38722741

RESUMO

Multiple myeloma (MM) remains an incurable hematological malignancy demanding innovative therapeutic strategies. Targeting MYC, the notorious yet traditionally undruggable oncogene, presents an appealing avenue. Here, using a genome-scale CRISPR-Cas9 screen, we identify the WNK lysine-deficient protein kinase 1 (WNK1) as a regulator of MYC expression in MM cells. Genetic and pharmacological inhibition of WNK1 reduces MYC expression and, further, disrupts the MYC-dependent transcriptional program. Mechanistically, WNK1 inhibition attenuates the activity of the immunoglobulin heavy chain (IgH) enhancer, thus reducing MYC transcription when this locus is translocated near the MYC locus. WNK1 inhibition profoundly impacts MM cell behaviors, leading to growth inhibition, cell-cycle arrest, senescence, and apoptosis. Importantly, the WNK inhibitor WNK463 inhibits MM growth in primary patient samples as well as xenograft mouse models and exhibits synergistic effects with various anti-MM compounds. Collectively, our study uncovers WNK1 as a potential therapeutic target in MM.


Assuntos
Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-myc , Proteína Quinase 1 Deficiente de Lisina WNK , Mieloma Múltiplo/genética , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/metabolismo , Proteína Quinase 1 Deficiente de Lisina WNK/genética , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Cadeias Pesadas de Imunoglobulinas/genética , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Rep ; 43(4): 114041, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573857

RESUMO

CD24 is frequently overexpressed in ovarian cancer and promotes immune evasion by interacting with its receptor Siglec10, present on tumor-associated macrophages, providing a "don't eat me" signal that prevents targeting and phagocytosis by macrophages. Factors promoting CD24 expression could represent novel immunotherapeutic targets for ovarian cancer. Here, using a genome-wide CRISPR knockout screen, we identify GPAA1 (glycosylphosphatidylinositol anchor attachment 1), a factor that catalyzes the attachment of a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins, as a positive regulator of CD24 cell surface expression. Genetic ablation of GPAA1 abolishes CD24 cell surface expression, enhances macrophage-mediated phagocytosis, and inhibits ovarian tumor growth in mice. GPAA1 shares structural similarities with aminopeptidases. Consequently, we show that bestatin, a clinically advanced aminopeptidase inhibitor, binds to GPAA1 and blocks GPI attachment, resulting in reduced CD24 cell surface expression, increased macrophage-mediated phagocytosis, and suppressed growth of ovarian tumors. Our study highlights the potential of targeting GPAA1 as an immunotherapeutic approach for CD24+ ovarian cancers.


Assuntos
Aciltransferases , Antígeno CD24 , Neoplasias Ovarianas , Fagocitose , Animais , Feminino , Humanos , Camundongos , Aciltransferases/metabolismo , Amidoidrolases/metabolismo , Amidoidrolases/genética , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Glicosilfosfatidilinositóis/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia
3.
Elife ; 52016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27472901

RESUMO

Epithelial cells that lose attachment to the extracellular matrix undergo a specialized form of apoptosis called anoikis. Here, using large-scale RNA interference (RNAi) screening, we find that KDM3A, a histone H3 lysine 9 (H3K9) mono- and di-demethylase, plays a pivotal role in anoikis induction. In attached breast epithelial cells, KDM3A expression is maintained at low levels by integrin signaling. Following detachment, integrin signaling is decreased resulting in increased KDM3A expression. RNAi-mediated knockdown of KDM3A substantially reduces apoptosis following detachment and, conversely, ectopic expression of KDM3A induces cell death in attached cells. We find that KDM3A promotes anoikis through transcriptional activation of BNIP3 and BNIP3L, which encode pro-apoptotic proteins. Using mouse models of breast cancer metastasis we show that knockdown of Kdm3a enhances metastatic potential. Finally, we find defective KDM3A expression in human breast cancer cell lines and tumors. Collectively, our results reveal a novel transcriptional regulatory program that mediates anoikis.


Assuntos
Anoikis , Células Epiteliais/fisiologia , Histona Desmetilases com o Domínio Jumonji/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/secundário , Adesão Celular , Linhagem Celular Tumoral , Modelos Animais de Doenças , Testes Genéticos , Humanos , Camundongos , Interferência de RNA
4.
Mol Cell ; 62(4): 479-90, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27184077

RESUMO

Recurrent mutations in the splicing factor U2AF35 are found in several cancers and myelodysplastic syndrome (MDS). How oncogenic U2AF35 mutants promote transformation remains to be determined. Here we derive cell lines transformed by the oncogenic U2AF35(S34F) mutant and identify aberrantly processed pre-mRNAs by deep sequencing. We find that in U2AF35(S34F)-transformed cells the autophagy-related factor 7 (Atg7) pre-mRNA is abnormally processed, which unexpectedly is not due to altered splicing but rather selection of a distal cleavage and polyadenylation (CP) site. This longer Atg7 mRNA is translated inefficiently, leading to decreased ATG7 levels and an autophagy defect that predisposes cells to secondary mutations, resulting in transformation. MDS and acute myeloid leukemia patient samples harboring U2AF35(S34F) have a similar increased use of the ATG7 distal CP site, and previous studies have shown that mice with hematopoietic cells lacking Atg7 develop an MDS-like syndrome. Collectively, our results reveal a basis for U2AF35(S34F) oncogenic activity.


Assuntos
Proteína 7 Relacionada à Autofagia/genética , Transformação Celular Neoplásica/genética , Leucemia Mieloide Aguda/genética , Síndromes Mielodisplásicas/genética , Processamento de Terminações 3' de RNA , Precursores de RNA/genética , RNA Mensageiro/genética , Fator de Processamento U2AF/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Autofagia , Proteína 7 Relacionada à Autofagia/metabolismo , Linhagem Celular Transformada , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mutação , Síndromes Mielodisplásicas/metabolismo , Síndromes Mielodisplásicas/patologia , Poliadenilação , Interferência de RNA , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Fator de Processamento U2AF/metabolismo , Fatores de Tempo , Transfecção , Carga Tumoral
5.
Adv Wound Care (New Rochelle) ; 4(6): 321-328, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26029482

RESUMO

Objective: Aberrant plasminogen activator inhibitor-1 (PAI-1) expression and activity have been implicated in bleeding disorders, multiorgan fibrosis, and wound healing anomalies. This study details the physiological consequences of targeted PAI-1 functional inhibition on cutaneous injury repair. Approach: Dorsal skin wounds from FVB/NJ mice, created with a 4 mm biopsy punch, were treated topically with the small-molecule PAI-1 antagonist tiplaxtinin (or vehicle control) for 5 days and then analyzed for markers of wound repair. Results: Compared to controls, tiplaxtinin-treated wounds displayed dramatic decreases in wound closure and re-epithelialization. PAI-1 immunoreactivity was evident at the migratory front in all injury sites indicating these effects were due to PAI-1 functional blockade and not PAI-1 expression changes. Stimulated HaCaT keratinocyte migration in response to recombinant PAI-1 in vitro was similarly attenuated by tiplaxtinin. While tiplaxtinin had no effect on keratinocyte proliferation, cell cycle progression, or apoptosis, it effectively reduced collagen deposition, the number of Ki-67+ fibroblasts, and incidence of differentiated myofibroblasts (i.e., smooth muscle α-actin immunoreactive cells), but not fibroblast apoptosis. Innovation: The role for PAI-1 in hemostasis and fibrinolysis is established; involvement of PAI-1 in cutaneous wound healing, however, remains unclear. This study tests the effect of a small-molecule PAI-1 inhibitor in a murine model of skin wound repair. Conclusion: Loss of PAI-1 activity significantly impaired wound closure. Re-epithelialization and fibroblast recruitment/differentiation were both reduced in tiplaxtinin-treated mice. Therapies directed at manipulation of PAI-1 expression and/or activity may have applicability as a treatment option for chronic wounds and scarring disorders.

6.
Cell Signal ; 27(5): 923-33, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25617690

RESUMO

Plasminogen activator inhibitor-1 (PAI-1), the primary inhibitor of urokinase-and tissue-type plasminogen activators (uPA and tPA), is an injury-response gene implicated in the development of tissue fibrosis and cardiovascular disease. PAI-1 mRNA and protein levels were elevated in the balloon catheter-injured carotid and in the vascular smooth muscle cell (VSMC)-enriched neointima of ligated arteries. PAI-1/uPA complex formation and PAI-1 antiproteolytic activity can be inhibited, via proteolytic cleavage, by the small molecule antagonist tiplaxtinin which effectively increased the VSMC apoptotic index in vitro and attenuated carotid artery neointimal formation in vivo. In contrast to the active full-length serine protease inhibitor (SERPIN), elastase-cleaved PAI-1 (similar to tiplaxtinin) also promoted VSMC apoptosis in vitro and similarly reduced neointimal formation in vivo. The mechanism through which cleaved PAI-1 (CL-PAI-1) stimulates apoptosis appears to involve the TNF-α family member TWEAK (TNF-α weak inducer of apoptosis) and it's cognate receptor, fibroblast growth factor (FGF)-inducible 14 (FN14). CL-PAI-1 sensitizes cells to TWEAK-stimulated apoptosis while full-length PAI-1 did not, presumably due to its ability to down-regulate FN14 in a low density lipoprotein receptor-related protein 1 (LRP1)-dependent mechanism. It appears that prolonged exposure of VSMCs to CL-PAI-1 induces apoptosis by augmenting TWEAK/FN14 pro-apoptotic signaling. This work identifies a critical, anti-stenotic, role for a functionally-inactive (at least with regard to its protease inhibitory function) cleaved SERPIN. Therapies that promote the conversion of full-length to cleaved PAI-1 may have translational implications.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Estenose das Carótidas/tratamento farmacológico , Estenose das Carótidas/metabolismo , Estenose das Carótidas/patologia , Linhagem Celular , Fibrinolisina/metabolismo , Hiperplasia/tratamento farmacológico , Hiperplasia/metabolismo , Hiperplasia/patologia , Masculino , Músculo Liso Vascular/metabolismo , Neointima/tratamento farmacológico , Neointima/metabolismo , Neointima/patologia , Ratos Sprague-Dawley
8.
J Cell Biochem ; 115(10): 1840-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24905330

RESUMO

Plasminogen activator inhibitor type-1 (PAI-1), a major regulator of the plasmin-dependent pericellular proteolytic cascade, is prominently expressed during the tissue response to injury although the factors that impact PAI-1 induction and their role in the repair process are unclear. Kinetic modeling using established biomarkers of cell cycle transit (c-MYC; cyclin D1; cyclin A) in synchronized human (HaCaT) keratinocytes, and previous cytometric assessments, indicated that PAI-1 transcription occurred early after serum-stimulation of quiescent (G0) cells and prior to G1 entry. It was established previously that differential residence of USF family members (USF1→USF2 switch) at the PE2 region E box (CACGTG) characterized the G0 → G1 transition period and the transcriptional status of the PAI-1 gene. A consensus PE2 E box motif (5'-CACGTG-3') at nucleotides -566 to -561 was required for USF/E box interactions and serum-dependent PAI-1 transcription. Site-directed CG → AT substitution at the two central nucleotides inhibited formation of USF/probe complexes and PAI-1 promoter-driven reporter expression. A dominant-negative USF (A-USF) construct or double-stranded PE2 "decoy" attenuated serum- and TGF-ß1-stimulated PAI-1 synthesis. Tet-Off induction of an A-USF insert reduced both PAI-1 and PAI-2 transcripts while increasing the fraction of Ki-67(+) cells. Conversely, overexpression of USF2 or adenoviral-delivery of a PAI-1 vector inhibited HaCaT colony expansion indicating that the USF1 → USF2 transition and subsequent PAI-1 transcription are critical events in the epithelial go-or-grow response. Collectively, these data suggest that USF2, and its target gene PAI-1, regulate serum-stimulated keratinocyte growth, and likely the cadence of cell cycle progression in replicatively competent cells as part of the injury repair program.


Assuntos
Proliferação de Células/genética , Queratinócitos/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Fatores Estimuladores Upstream/genética , Cicatrização/genética , Divisão Celular , Linhagem Celular , Ciclina A , Ciclina D1 , Proteínas de Ligação a DNA/metabolismo , Fase G1/genética , Humanos , Antígeno Ki-67/metabolismo , Inibidor 1 de Ativador de Plasminogênio/biossíntese , Inibidor 2 de Ativador de Plasminogênio/genética , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-myc , Transcrição Gênica , Fator de Crescimento Transformador beta1 , Fatores Estimuladores Upstream/biossíntese
9.
Adv Wound Care (New Rochelle) ; 3(3): 281-290, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24669362

RESUMO

Significance: A highly interactive serine protease/plasmin/matrix metalloproteinase axis regulates stromal remodeling in the wound microenvironment. Current findings highlight the importance of stringent controls on protease expression and their topographic activities in cell proliferation, migration, and tissue homeostasis. Targeting elements in this cascading network may lead to novel therapeutic approaches for fibrotic diseases and chronic wounds. Recent Advances: Matrix-active proteases and their inhibitors orchestrate wound site tissue remodeling, cell migration, and proliferation. Indeed, the serine proteases urokinase plasminogen activator and tissue-type plasminogen activator (uPA/tPA) and their major phsyiological inhibitor, plasminogen activator inhibitor-1 (PAI-1; serine protease inhibitor clade E member 1 [SERPINE1]), are upregulated in several cell types during injury repair. Coordinate expression of proteolytic enzymes and their inhibitors in the wound bed provides a mechanism for fine control of focal proteolysis to facilitate matrix restructuring and cell motility in complex environments. Critical Issues: Cosmetic and tissue functional consequences of wound repair anomalies affect the quality of life of millions of patients in the United States alone. The development of novel therapeutics to manage individuals most affected by healing anomalies will likely derive from the identification of critical, translationally accessible, control elements in the wound site microenvironment. Future Directions: Activation of the PAI-1 gene early after wounding, its prominence in the repair transcriptome and varied functions suggest a key role in the global cutaneous injury response program. Targeting PAI-1 gene expression and/or PAI-1 function with molecular genetic constructs, neutralizing antibodies or small molecule inhibitors may provide a novel, therapeutically relevant approach, to manage the pathophysiology of wound healing disorders associated with deficient or excessive PAI-1 levels.

12.
Mol Med Ther ; 1(1): 101, 2012 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-23936868

RESUMO

Plasminogen activator inhibitor-1 (PAI-1; SERPINE1) is the major physiologic regulator of the plasmin-based pericellular proteolytic cascade, a modulator of vascular smooth muscle cell (VSMC) migration and a causative factor in cardiovascular disease and restenosis, particularly in the context of increased vessel transforming growth factor- ß1 (TGF-ß1) levels. PAI-1 limits conversion of plasminogen to plasmin (and, thereby, fibrin degradation) by inhibiting its protease targets urokinase and tissue-type plasminogen activators (uPA, tPA). PAI-1 also has signaling functions and binds to the low density lipoprotein receptor-related protein 1 (LRP1) to regulate LRP1-dependent cell motility that, in turn, contributes to neointima formation. PAI-1/uPA/uPA receptor/LRPI/integrin complexes are endocytosed with subsequent uPAR/LRP1/integrin redistribution to the leading edge, initiating an "adhesion-detachment-readhesion" cycle to promote cell migration. PAI-1 also interacts with LRP1 in a uPA/uPAR-independent manner triggering Jak/Stat1 pathway activation to stimulate cell motility. PAI-1 itself is a substrate for extracellular proteases and exists in a "cleaved" form which, while unable to interact with uPA and tPA, retains LRP1-binding and migratory activity. These findings suggest that there are multiple mechanisms through which inhibition of PAI-1 may promote cardiovascular health. Several studies have focused on the design, synthesis and preclinical assessment of PAI-1 antagonists including monoclonal antibodies, peptides and low molecular weight (LMW) antagonists. This review discusses the translational impact of LMW PAI-1 antagonists on cardiovascular disease addressing PAI-1-initiated signaling, PAI-1 structure, the design and characteristics of PAI-1-targeting drugs, results of in vitro and in vivo studies, and their clinical implications.

13.
CNS Neurol Disord Drug Targets ; 8(6): 512-9, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19811446

RESUMO

Multiple sclerosis (MS) is a chronic, debilitating condition mediated by inflammation and neurodegeneration. The ultimate goal of treatment is to delay or halt the progression of irreversible disability. Disease-modifying drugs (DMDs), including beta interferon and glatiramer acetate during phase III trails, have been shown to reduce relapse rates in relapsing-remitting multiple sclerosis (RRMS) as detected by magnetic resonance imaging (MRI). However, the long-term effects of DMDs on MS progression are not very clear; therefore, the aim of this paper is to evaluate the evidence available of the long-term effects of DMDs on reducing the progression of multiple sclerosis. A number of open-label, prospective extensions that followed a cohort of patients enrolled in double-blind, placebo-controlled trials were examined. Methodological difficulties faced in designing a trial of extended duration were hard to overcome, however, and long-term, open-label extensions of interferon and glatiramer acetate failed to show significant beneficial effects in delaying disability progression, questioning the cost-effectiveness of these therapies in the long-term.


Assuntos
Fatores Imunológicos/uso terapêutico , Interferon beta/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Peptídeos/uso terapêutico , Ensaios Clínicos Fase III como Assunto/métodos , Estudos de Coortes , Método Duplo-Cego , Acetato de Glatiramer , Humanos , Imageamento por Ressonância Magnética/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do Tratamento
14.
Int J Nanomedicine ; 4: 1-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19421366

RESUMO

The emergence of nanotechnology has had a profound effect on many areas of healthcare and scientific research. Having grown exponentially, the focus of nanotechnology has been on engineering diversified novel applications that even go beyond therapeutic activity; nanotechnology also offers the ability to detect diseases, such as cancer, much earlier than ever imaginable. Often, patients diagnosed with breast, lung, colon, prostate, and ovarian cancer have hidden or overt metastatic colonies. With the advent of diagnostic nanotechnology, these numbers are expected to greatly diminish. This review provides a brief description of nanoparticle (liposome, quantum dot, and dendrimer)-mediated cancer therapy in the last decade with an emphasis on the development and use of dendrimers in cancer therapeutics.


Assuntos
Antineoplásicos/administração & dosagem , Dendrímeros/química , Dendrímeros/uso terapêutico , Nanomedicina/tendências , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Humanos
15.
J Cell Biochem ; 104(6): 2131-42, 2008 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-18446786

RESUMO

Cyclooxygenase-2 (COX-2) content is increased in many types of tumor cells. We have investigated the mechanism by which resveratrol, a stilbene that is pro-apoptotic in many tumor cell lines, causes apoptosis in human head and neck squamous cell carcinoma UMSCC-22B cells by a mechanism involving cellular COX-2. UMSCC-22B cells treated with resveratrol for 24 h, with or without selected inhibitors, were examined: (1) for the presence of nuclear activated ERK1/2, p53 and COX-2, (2) for evidence of apoptosis, and (3) by chromatin immunoprecipitation to demonstrate p53 binding to the p21 promoter. Stilbene-induced apoptosis was concentration-dependent, and associated with ERK1/2 activation, serine-15 p53 phosphorylation and nuclear accumulation of these proteins. These effects were blocked by inhibition of either ERK1/2 or p53 activation. Resveratrol also caused p53 binding to the p21 promoter and increased abundance of COX-2 protein in UMSCC-22B cell nuclei. Resveratrol-induced nuclear COX-2 accumulation was dependent upon ERK1/2 activation, but not p53 activation. Activation of p53 and p53-dependent apoptosis were blocked by the COX-2 inhibitor, NS398, and by transfection of cells with COX-2-siRNA. In UMSCC-22B cells, resveratrol-induced apoptosis and induction of nuclear COX-2 accumulation share dependence on the ERK1/2 signal transduction pathway. Resveratrol-inducible nuclear accumulation of COX-2 is essential for p53 activation and p53-dependent apoptosis in these cancer cells.


Assuntos
Apoptose/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Células Escamosas/enzimologia , Estilbenos/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/enzimologia , Inibidor de Quinase Dependente de Ciclina p21/genética , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Modelos Biológicos , Neoplasias de Células Escamosas/patologia , Nitrobenzenos/farmacologia , Fosfosserina/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Resveratrol , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Sulfonamidas/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Appl Health Econ Health Policy ; 6(2-3): 93-102, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-19231903

RESUMO

Direct-to-consumer advertising (DTCA) of drugs has been suggested to be a factor in the increased burden of healthcare spending within the US. This review article analyses the pharmaceutical spending differences between the US and New Zealand, two nations that allow DTCA. The pharmaceutical spending burden of New Zealand and the US was compared by assessing the impact of heavily advertised drugs and their position and rank in the pharmaceutical spending of their respective nation. The US spends far more money on pharmaceuticals than New Zealand. It may appear that heavily advertised drugs in the US have a potentially larger impact on what is being prescribed and paid for. It is also probable that the differences in healthcare systems in each nation (free market vs socialized medicine) can have an influence on pharmaceutical spending. The great amount of money being spent on pharmaceuticals per capita in the US is a more complex issue than can be solved solely by targeting DTCA.


Assuntos
Publicidade , Comércio , Participação da Comunidade , Custos de Medicamentos , Prescrições de Medicamentos/economia , Sistemas Pré-Pagos de Saúde/economia , Preparações Farmacêuticas/economia , Adulto , Idoso , Orçamentos , Atenção à Saúde , Indústria Farmacêutica , Humanos , Seguro Saúde/economia , Medicare/economia , Pessoa de Meia-Idade , Nova Zelândia , Estados Unidos
17.
Nitric Oxide ; 14(3): 228-37, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16412670

RESUMO

We report here that NADPH analogs such as 2'5'ADP, ATP, and 2'AMP paradoxically activate constitutive calcium/calmodulin regulated nitric oxide synthases (cNOS), including the endothelial isoform (eNOS) and the neuronal isoform (nNOS). These activators compete with NADPH by filling the binding site of the adenine moiety of NADPH, but do not occupy the entire NADPH binding domain. Effects of these analogs on cNOS's include increasing the electron transfer rate to external acceptors, as assessed by cytochrome c reductase activity in the absence of calmodulin. In addition, NO synthase activity in the presence of calmodulin (with or without added calcium) was increased by the addition of NADPH analogs. In contrast, the same NADPH analogs inhibit iNOS, the calcium insensitive inducible isoform, which lacks control elements found in constitutive isoforms. Because ATP and ADP are among the effective activators of cNOS isoforms, these effects may be physiologically relevant.


Assuntos
Difosfato de Adenosina/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , NADP/análogos & derivados , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico/biossíntese , Animais , Cálcio/farmacologia , Calmodulina/farmacologia , Bovinos , Transporte de Elétrons , Óxido Nítrico Sintase Tipo I/antagonistas & inibidores , Óxido Nítrico Sintase Tipo I/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Estrutura Terciária de Proteína , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...