Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38405967

RESUMO

The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRß) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRß and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.

2.
Nat Immunol ; 25(3): 462-470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278966

RESUMO

The persistence of CD4+ T cells carrying latent human immunodeficiency virus-1 (HIV-1) proviruses is the main barrier to a cure. New therapeutics to enhance HIV-1-specific immune responses and clear infected cells will probably be necessary to achieve reduction of the latent reservoir. In the present study, we report two single-chain diabodies (scDbs) that target the HIV-1 envelope protein (Env) and the human type III Fcγ receptor (CD16). We show that the scDbs promoted robust and HIV-1-specific natural killer (NK) cell activation and NK cell-mediated lysis of infected cells. Cocultures of CD4+ T cells from people with HIV-1 on antiretroviral therapy (ART) with autologous NK cells and the scDbs resulted in marked elimination of reservoir cells that was dependent on latency reversal. Treatment of human interleukin-15 transgenic NSG mice with one of the scDbs after ART initiation enhanced NK cell activity and reduced reservoir size. Thus, HIV-1-specific scDbs merit further evaluation as potential therapeutics for clearance of the latent reservoir.


Assuntos
Anticorpos Biespecíficos , HIV-1 , Animais , Camundongos , Humanos , Células Matadoras Naturais , Citotoxicidade Imunológica , Morte Celular , Camundongos Transgênicos
3.
J Exp Med ; 221(3)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38270554

RESUMO

The latent reservoir for HIV-1 in resting CD4+ T cells persists despite antiretroviral therapy as a barrier to cure. The antigen-driven proliferation of infected cells is a major mechanism of reservoir persistence. However, activation through the T cell antigen receptor (TCR) can induce latent proviruses, leading to viral cytopathic effects and immune clearance. In single-cell studies, we show that, relative to uninfected cells or cells with a defective provirus, CD4+ T cells with an intact provirus have a profound proliferative defect in response to TCR stimulation. Virion production was observed in only 16.5% of cultures with an intact provirus, but proliferation was reduced even when no virion production was detected. Proliferation was inversely correlated with in vivo clone size. These results may reflect the effects of previous in vivo proliferation and do not support attempts to reduce the reservoir with antiproliferative agents, which may have greater effects on normal T cell responses.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Linfócitos T CD4-Positivos , Latência Viral , Provírus , Receptores de Antígenos de Linfócitos T
4.
bioRxiv ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37961482

RESUMO

HIV can persist in a latent form as integrated DNA (provirus) in resting CD4+ T cells of infected individuals and as such is unaffected by antiretroviral therapy (ART). Despite being a major obstacle for eradication efforts, the genetic variation and timing of formation of this latent reservoir remains poorly understood. Previous studies on when virus is deposited in the latent reservoir have come to contradictory conclusions. To reexamine the genetic variation of HIV in CD4+ T cells during ART, we determined the divergence in envelope sequences collected from 10 SIV infected rhesus macaques. We found that the macaques displayed a biphasic decline of the viral divergence over time, where the first phase lasted for an average of 11.6 weeks (range 4-28 weeks). Motivated by recent observations that the HIV-infected CD4+ T cell population is composed of short- and long-lived subsets, we developed a model to study the divergence dynamics. We found that SIV in short-lived cells was on average more diverged, while long-lived cells harbored less diverged virus. This suggests that the long-lived cells harbor virus deposited starting earlier in infection and continuing throughout infection, while short-lived cells predominantly harbor more recent virus. As these cell populations decayed, the overall proviral divergence decline matched that observed in the empirical data. This model explains previous seemingly contradictory results on the timing of virus deposition into the latent reservoir, and should provide guidance for future eradication efforts.

5.
Curr HIV/AIDS Rep ; 20(6): 428-439, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37955826

RESUMO

PURPOSE OF REVIEW: In this review, we discuss what persistent viremia has taught us about the biology of the HIV-1 reservoir during antiretroviral therapy (ART). We will also discuss the implications of this phenomenon for HIV-1 cure research and its clinical management. RECENT FINDINGS: While residual viremia (RV, 1-3 HIV-1 RNA copies/ml) can be detected in most of people on ART, some individuals experience non-suppressible viremia (NSV, > 20-50 copies/mL) despite optimal adherence. When issues of drug resistance and pharmacokinetics are ruled out, this persistent virus in plasma is the reflection of virus production from clonally expanded CD4+ T cells carrying proviruses. Recent work has shown that a fraction of the proviruses source of NSV are not infectious, due to defects in the 5'-Leader sequence. However, additional viruses and host determinants of NSV are not fully understood. The study of NSV is of prime importance because it represents a challenge for the clinical care of people on ART, and it sheds light on virus-host interactions that could advance HIV-1 remission research.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , HIV-1/genética , Infecções por HIV/tratamento farmacológico , Viremia/tratamento farmacológico , Linfócitos T CD4-Positivos , Provírus/genética , Carga Viral
6.
J Clin Invest ; 133(21)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37698927

RESUMO

BACKGROUNDHIV-1-infected CD4+ T cells contribute to latent reservoir persistence by proliferating while avoiding immune recognition. Integration features of intact proviruses in elite controllers (ECs) and people on long-term therapy suggest that proviruses in specific chromosomal locations can evade immune surveillance. However, direct evidence of this mechanism is missing.METHODSIn this case report, we characterized integration sites and full genome sequences of expanded T cell clones in an EC before and after chemoradiation. We identified the cognate peptide of infected clones to investigate cell proliferation and virus production induced by T cell activation, and susceptibility to autologous CD8+ T cells.RESULTSThe proviral landscape was dominated by 2 large clones with replication-competent proviruses integrated into zinc finger (ZNF) genes (ZNF470 and ZNF721) in locations previously associated with deeper latency. A third nearly intact provirus, with a stop codon in Pol, was integrated into an intergenic site. Upon stimulation with cognate Gag peptides, infected clones proliferated extensively and produced virus, but the provirus in ZNF721 was 200-fold less inducible. While autologous CD8+ T cells decreased the proliferation of cells carrying the intergenic provirus, they had no effect on cells with the provirus in the ZNF721 gene.CONCLUSIONSWe provide direct evidence that upon activation of infected clones by cognate antigen, the lower inducibility of intact proviruses in ZNF genes can result in immune evasion and persistence.FUNDINGOffice of the NIH Director and National Institute of Dental & Craniofacial Research; NIAID, NIH; Johns Hopkins University Center for AIDS Research.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , Linfócitos T CD4-Positivos , Células Clonais , Latência Viral
7.
J Clin Invest ; 133(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37463049

RESUMO

HIV-1 persists in a latent reservoir in resting CD4+ T cells despite antiretroviral therapy (ART). The reservoir decays slowly over the first 7 years of ART (t1/2 = 44 months). However, whether decay continues with long-term ART is unclear. Recent integration site studies indicate gradual selection against inducible, intact proviruses, raising speculation that decades of ART might allow treatment interruption without viral rebound. Therefore, we measured the reservoir in 42 people on long-term ART (mean 22 years) using a quantitative viral outgrowth assay. After 7 years of ART, there was no long-term decrease in the frequency of inducible, replication-competent proviruses but rather an increase with an estimated doubling time of 23 years. Another reservoir assay, the intact proviral DNA assay, confirmed that reservoir decay with t1/2 of 44 months did not continue with long-term ART. The lack of decay reflected proliferation of infected cells. Most inducible, replication-competent viruses (79.8%) had env sequences identical to those of other isolates from the same sample. Thus, although integration site analysis indicates changes in reservoir composition, the proliferation of CD4+ T cells counteracts decay, maintaining the frequency of inducible, replication-competent proviruses at roughly constant levels over the long term. These results reinforce the need for lifelong ART.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Infecções por HIV/tratamento farmacológico , Replicação Viral , Provírus/genética , Linfócitos T CD4-Positivos , Carga Viral , Latência Viral
8.
Cell Host Microbe ; 31(3): 356-372.e5, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36809762

RESUMO

The decay kinetics of HIV-1-infected cells are critical to understand virus persistence. We evaluated the frequency of simian immunodeficiency virus (SIV)-infected cells for 4 years of antiretroviral therapy (ART). The intact proviral DNA assay (IPDA) and an assay for hypermutated proviruses revealed short- and long-term infected cell dynamics in macaques starting ART ∼1 year after infection. Intact SIV genomes in circulating CD4+T cells showed triphasic decay with an initial phase slower than the decay of the plasma virus, a second phase faster than the second phase decay of intact HIV-1, and a stable third phase reached after 1.6-2.9 years. Hypermutated proviruses showed bi- or mono-phasic decay, reflecting different selective pressures. Viruses replicating at ART initiation had mutations conferring antibody escape. With time on ART, viruses with fewer mutations became more prominent, reflecting decay of variants replicating at ART initiation. Collectively, these findings confirm ART efficacy and indicate that cells enter the reservoir throughout untreated infection.


Assuntos
Infecções por HIV , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Animais , Vírus da Imunodeficiência Símia/genética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Macaca mulatta , Infecções por HIV/tratamento farmacológico , Provírus/genética , Linfócitos T CD4-Positivos , Carga Viral
9.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36602866

RESUMO

BackgroundAntiretroviral therapy (ART) halts HIV-1 replication, decreasing viremia to below the detection limit of clinical assays. However, some individuals experience persistent nonsuppressible viremia (NSV) originating from CD4+ T cell clones carrying infectious proviruses. Defective proviruses represent over 90% of all proviruses persisting during ART and can express viral genes, but whether they can cause NSV and complicate ART management is unknown.MethodsWe undertook an in-depth characterization of proviruses causing NSV in 4 study participants with optimal adherence and no drug resistance. We investigated the impact of the observed defects on 5'-leader RNA properties, virus infectivity, and gene expression. Integration-site specific assays were used to track these proviruses over time and among cell subsets.ResultsClones carrying proviruses with 5'-leader defects can cause persistent NSV up to approximately 103 copies/mL. These proviruses had small, often identical deletions or point mutations involving the major splicing donor (MSD) site and showed partially reduced RNA dimerization and nucleocapsid binding. Nevertheless, they were inducible and produced noninfectious virions containing viral RNA, but lacking envelope.ConclusionThese findings show that proviruses with 5'-leader defects in CD4+ T cell clones can give rise to NSV, affecting clinical care. Sequencing of the 5'-leader can help in understanding failure to completely suppress viremia.FundingOffice of the NIH Director and National Institute of Dental and Craniofacial Research, NIH; Howard Hughes Medical Institute; Johns Hopkins University Center for AIDS Research; National Institute for Allergy and Infectious Diseases (NIAID), NIH, to the PAVE, BEAT-HIV, and DARE Martin Delaney collaboratories.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , Provírus/metabolismo , HIV-1/genética , HIV-1/metabolismo , Viremia/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Linfócitos T CD4-Positivos , RNA Viral/genética , RNA Viral/metabolismo
10.
PLoS Pathog ; 18(9): e1010845, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36074794

RESUMO

Antiretroviral therapy (ART) effectively inhibits HIV-1 replication but is not curative due to the persistence of a latent viral reservoir in resting CD4+ T cells. This reservoir is a major barrier to cure. Sequencing studies have revealed that the population of proviruses persisting in ART-treated individuals is dominated by defective proviruses that cannot give rise to viral rebound due to fatal defects including large deletions and APOBEC3-mediated hypermutation. Near full genome sequencing (nFGS) of individual proviruses is used in reservoir assays to provide an estimate of the fraction of proviruses that are intact. nFGS methods rely on a long-distance outer PCR capturing most (~9 kb) of the genome, followed by nested inner PCRs. The outer PCR is carried out at limit dilution, and interpretation of the results is based on the assumption that all proviruses are quantitatively captured. Here, we evaluate nFGS methods using the intact proviral DNA assay (IPDA), a multiplex digital droplet PCR assay that quantitates intact and defective proviruses with single molecule sensitivity using only short, highly efficient amplicons. We analyzed proviral templates of known sequence to avoid the additional complication of sequence polymorphism. With the IPDA, we quantitated molecular yields at each step of nFGS methods. We demonstrate that nFGS methods are inefficient and miss ~70% of full-length proviruses due to amplification failure at the initial outer PCR step. In contrast, proviruses with large internal deletions encompassing 70% of the genome can be quantitatively amplified under the same conditions. Accurate measurement of the latent reservoir of HIV-1 is essential for evaluating the efficacy of cure strategies, and the bias against full length proviruses in nFGS methods must be considered.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Linfócitos T CD4-Positivos , DNA Viral/genética , HIV-1/genética , Humanos , Provírus/genética , Carga Viral
11.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35110411

RESUMO

In persons living with HIV-1 (PLWH) who start antiretroviral therapy (ART), plasma virus decays in a biphasic fashion to below the detection limit. The first phase reflects the short half-life (<1 d) of cells that produce most of the plasma virus. The second phase represents the slower turnover (t1/2 = 14 d) of another infected cell population, whose identity is unclear. Using the intact proviral DNA assay (IPDA) to distinguish intact and defective proviruses, we analyzed viral decay in 17 PLWH initiating ART. Circulating CD4+ T cells with intact proviruses include few of the rapidly decaying first-phase cells. Instead, this population initially decays more slowly (t1/2 = 12.9 d) in a process that largely represents death or exit from the circulation rather than transition to latency. This more protracted decay potentially allows for immune selection. After ∼3 mo, the decay slope changes, and CD4+ T cells with intact proviruses decay with a half-life of 19 mo, which is still shorter than that of the latently infected cells that persist on long-term ART. Two-long-terminal repeat (2LTR) circles decay with fast and slow phases paralleling intact proviruses, a finding that precludes their use as a simple marker of ongoing viral replication. Proviruses with defects at the 5' or 3' end of the genome show equivalent monophasic decay at rates that vary among individuals. Understanding these complex early decay processes is important for correct use of reservoir assays and may provide insights into properties of surviving cells that can constitute the stable latent reservoir.


Assuntos
Antirretrovirais/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Provírus/efeitos dos fármacos , Vírion/efeitos dos fármacos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Células Cultivadas , DNA Viral/efeitos dos fármacos , Humanos , Estudos Longitudinais , Carga Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
12.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33301425

RESUMO

Clonal expansion of infected CD4+ T cells is a major mechanism of HIV-1 persistence and a barrier to achieving a cure. Potential causes are homeostatic proliferation, effects of HIV-1 integration, and interaction with antigens. Here, we show that it is possible to link antigen responsiveness, the full proviral sequence, the integration site, and the T cell receptor ß-chain (TCRß) sequence to examine the role of recurrent antigenic exposure in maintaining the HIV-1 reservoir. We isolated CMV- and Gag-responding CD4+ T cells from 10 treated individuals. Proviral populations in CMV-responding cells were dominated by large clones, including clones harboring replication-competent proviruses. TCRß repertoires showed high clonality driven by converging adaptive responses. Although some proviruses were in genes linked to HIV-1 persistence (BACH2, STAT5B, MKL1), the proliferation of infected cells under antigenic stimulation occurred regardless of the site of integration. Paired TCRß and integration site analysis showed that infection could occur early or late in the course of a clone's response to antigen and could generate infected cell populations too large to be explained solely by homeostatic proliferation. Together, these findings implicate antigen-driven clonal selection as a major factor in HIV-1 persistence, a finding that will be a difficult challenge to eradication efforts.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Seleção Clonal Mediada por Antígeno , Infecções por HIV/imunologia , HIV-1/fisiologia , Integração Viral/imunologia , Latência Viral/imunologia , Adulto , Linfócitos T CD4-Positivos/patologia , Feminino , Infecções por HIV/terapia , Humanos , Masculino , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
13.
Proc Natl Acad Sci U S A ; 117(50): 32066-32077, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33239444

RESUMO

In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Infecções por HIV/terapia , HIV-1/imunologia , Replicação Viral/imunologia , Adulto , Fármacos Anti-HIV/farmacologia , Fármacos Anti-HIV/uso terapêutico , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/isolamento & purificação , Anticorpos Neutralizantes/uso terapêutico , Transfusão de Sangue Autóloga/métodos , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Células Cultivadas , Terapia Combinada/métodos , Feminino , Anticorpos Anti-HIV/sangue , Anticorpos Anti-HIV/isolamento & purificação , Anticorpos Anti-HIV/uso terapêutico , Infecções por HIV/sangue , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/uso terapêutico , Leucaférese , Masculino , Pessoa de Meia-Idade , Cultura Primária de Células , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia , Replicação Viral/efeitos dos fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia
14.
Proc Natl Acad Sci U S A ; 117(31): 18692-18700, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690683

RESUMO

A scalable approach for quantifying intact HIV-1 proviruses is critical for basic research and clinical trials directed at HIV-1 cure. The intact proviral DNA assay (IPDA) is a novel approach to characterizing the HIV-1 reservoir, focusing on the genetic integrity of individual proviruses independent of transcriptional status. It uses multiplex digital droplet PCR to distinguish and separately quantify intact proviruses, defined by a lack of overt fatal defects such as large deletions and APOBEC3G-mediated hypermutation, from the majority of proviruses that have such defects. This distinction is important because only intact proviruses cause viral rebound on ART interruption. To evaluate IPDA performance and provide benchmark data to support its implementation, we analyzed peripheral blood samples from 400 HIV-1+ adults on ART from several diverse cohorts, representing a robust sample of treated HIV-1 infection in the United States. We provide direct quantitative evidence that defective proviruses greatly outnumber intact proviruses (by >12.5 fold). However, intact proviruses are present at substantially higher frequencies (median, 54/106 CD4+ T cells) than proviruses detected by the quantitative viral outgrowth assay, which requires induction and in vitro growth (∼1/106 CD4+ T cells). IPDA amplicon signal issues resulting from sequence polymorphisms were observed in only 6.3% of individuals and were readily apparent and easily distinguished from low proviral frequency, an advantage of the IPDA over standard PCR assays which generate false-negative results in such situations. The large IPDA dataset provided here gives the clearest quantitative picture to date of HIV-1 proviral persistence on ART.


Assuntos
DNA Viral/sangue , Infecções por HIV , Provírus/genética , Latência Viral/genética , Adulto , Feminino , Infecções por HIV/sangue , Infecções por HIV/epidemiologia , Infecções por HIV/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase/métodos
15.
Trends Immunol ; 41(6): 466-480, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32414695

RESUMO

Latent HIV-1 persists indefinitely during antiretroviral therapy (ART) as an integrated silent genome in long-lived memory CD4+ T cells. In untreated infections, immune activation increases the turnover of intrinsically long-lived provirus-containing CD4+ T cells. Those are 'washed out' as a result of their activation, which when coupled to viral protein expression can facilitate local inflammation and recruitment of uninfected cells to activation sites, causing latently infected cells to compete for survival. De novo infection can counter this washout. During ART, inflammation and CD4+ T cell activation wane, resulting in reduced cell turnover and a persistent reservoir. We propose accelerating reservoir washout during ART by triggering sequential waves of polyclonal CD4+ T cell activation while simultaneously enhancing virus protein expression. Reservoir reduction as an adjunct to other therapies might achieve lifelong viral control.


Assuntos
Infecções por HIV , HIV-1 , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , Humanos , Ativação Linfocitária , Latência Viral/efeitos dos fármacos , Latência Viral/imunologia
16.
Viruses ; 12(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991737

RESUMO

Combination antiretroviral therapy (cART) controls but does not eradicate HIV infection; HIV persistence is the principal obstacle to curing infections. The proportion of defective proviruses increases during cART, but the dynamics of this process are not well understood, and a quantitative analysis of how the proviral landscape is reshaped after cART is initiated is critical to understanding how HIV persists. Here, we studied longitudinal samples from HIV infected individuals undergoing long term cART using multiplexed Droplet Digital PCR (ddPCR) approaches to quantify the proportion of deleted proviruses in lymphocytes. In most individuals undergoing cART, HIV proviruses that contain gag are lost more quickly than those that lack gag. Increases in the fraction of gag-deleted proviruses occurred only after 1-2 years of therapy, suggesting that the immune system, and/or toxicity of viral re-activation helps to gradually shape the proviral landscape. After 10-15 years on therapy, there were as many as 3.5-5 times more proviruses in which gag was deleted or highly defective than those containing intact gag. We developed a provirus-specific ddPCR approach to quantify individual clones. Investigation of a clone of cells containing a deleted HIV provirus integrated in the HORMAD2 gene revealed that the cells underwent a massive expansion shortly after cART was initiated until the clone, which was primarily in effector memory cells, dominated the population of proviruses for over 6 years. The expansion of this HIV-infected clone had substantial effects on the overall proviral population.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , HIV-1/genética , HIV-1/isolamento & purificação , Leucócitos Mononucleares/virologia , Provírus/isolamento & purificação , Terapia Antirretroviral de Alta Atividade , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular/genética , DNA Viral/sangue , DNA Viral/genética , Vírus Defeituosos/genética , Genes gag , Repetição Terminal Longa de HIV , HIV-1/efeitos dos fármacos , Humanos , Memória Imunológica , Reação em Cadeia da Polimerase Multiplex , Provírus/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/virologia , Fatores de Tempo , Resultado do Tratamento , Carga Viral
17.
Virol J ; 17(1): 4, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910871

RESUMO

Despite antiretroviral therapy (ART) which halts HIV-1 replication and reduces plasma viral load to clinically undetectable levels, viral rebound inevitably occurs once ART is interrupted. HIV-1-infected cells can undergo clonal expansion, and these clonally expanded cells increase over time. Over 50% of latent reservoirs are maintained through clonal expansion. The clonally expanding HIV-1-infected cells, both in the blood and in the lymphoid tissues, contribute to viral rebound. The major drivers of clonal expansion of HIV-1-infected cells include antigen-driven proliferation, homeostatic proliferation and HIV-1 integration site-dependent proliferation. Here, we reviewed how viral, immunologic and genomic factors contribute to clonal expansion of HIV-1-infected cells, and how clonal expansion shapes the HIV-1 latent reservoir. Antigen-specific CD4+ T cells specific for different pathogens have different clonal expansion dynamics, depending on antigen exposure, cytokine profiles and exhaustion phenotypes. Homeostatic proliferation replenishes the HIV-1 latent reservoir without inducing viral expression and immune clearance. Integration site-dependent proliferation, a mechanism also deployed by other retroviruses, leads to slow but steady increase of HIV-1-infected cells harboring HIV-1 proviruses integrated in the same orientation at specific sites of certain cancer-related genes. Targeting clonally expanding HIV-1 latent reservoir without disrupting CD4+ T cell function is a top priority for HIV-1 eradication.


Assuntos
Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Latência Viral , Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/virologia , Humanos , Provírus , Carga Viral , Integração Viral , Replicação Viral
18.
Sci Transl Med ; 12(528)2020 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-31996465

RESUMO

The latent reservoir of HIV-1 in resting CD4+ T cells is a major barrier to cure. It is unclear whether the latent reservoir resides principally in particular subsets of CD4+ T cells, a finding that would have implications for understanding its stability and developing curative therapies. Recent work has shown that proliferation of HIV-1-infected CD4+ T cells is a major factor in the generation and persistence of the latent reservoir and that latently infected T cells that have clonally expanded in vivo can proliferate in vitro without producing virions. In certain CD4+ memory T cell subsets, the provirus may be in a deeper state of latency, allowing the cell to proliferate without producing viral proteins, thus permitting escape from immune clearance. To evaluate this possibility, we used a multiple stimulation viral outgrowth assay to culture resting naïve, central memory (TCM), transitional memory (TTM), and effector memory (TEM) CD4+ T cells from 10 HIV-1-infected individuals on antiretroviral therapy. On average, only 1.7% of intact proviruses across all T cell subsets were induced to transcribe viral genes and release replication-competent virus after stimulation of the cells. We found no consistent enrichment of intact or inducible proviruses in any T cell subset. Furthermore, we observed notable plasticity among the canonical memory T cell subsets after activation in vitro and saw substantial person-to-person variability in the inducibility of infectious virus release. This finding complicates the vision for a targeted approach for HIV-1 cure based on T cell memory subsets.


Assuntos
Linfócitos T CD4-Positivos/imunologia , HIV-1/imunologia , Memória Imunológica , Provírus/imunologia , Subpopulações de Linfócitos T/imunologia , Adulto , Diferenciação Celular/genética , Proliferação de Células/efeitos dos fármacos , DNA Viral/sangue , DNA Viral/genética , Regulação Viral da Expressão Gênica , HIV-1/genética , HIV-1/crescimento & desenvolvimento , Humanos , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Fenótipo , Filogenia , Transcrição Gênica , Replicação Viral/genética
19.
Front Microbiol ; 10: 2204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632364

RESUMO

BACKGROUND: HIV-1 proviruses can persist during ART in clonally-expanded populations of CD4+ T cells. To date, few examples of an expanded clones containing replication-competent proviruses exist, although it is suspected to be common. One such clone, denoted AMBI-1 (Maldarelli et al., 2014), was also a source of persistent viremia on ART, begging the question of how the AMBI-1 clone can survive despite infection with a replication-competent, actively-expressing provirus. We hypothesized that only a small fraction of cells within the AMBI-1 clone are activated to produce virus particles during cell division while the majority remain latent despite division, ensuring their survival. To address this question, we determined the fraction of HIV-1 proviruses within the AMBI-1 clone that expresses unspliced cell-associated RNA during ART and compared this fraction to 33 other infected T cell clones within the same individual. RESULTS: In total, 34 different clones carrying either intact or defective proviruses in "Patient 1" from Maldarelli et al. (2014) were assessed. We found that 2.3% of cells within the AMBI-1 clone contained unspliced HIV-1 RNA. Highest levels of HIV-1 RNA were found in the effector memory (EM) T cell subset. The fraction of cells within clones that contained HIV-1 RNA was not different in clones with intact (median 2.3%) versus defective (median 3.5%) proviruses (p = 0.2). However, higher fractions and levels of RNA were found in cells with proviruses containing multiple drug resistance mutations, including those contributing to rebound viremia. CONCLUSION: These findings show that the vast majority of HIV-1 proviruses within expanded T cell clones, including intact proviruses, may be transcriptionally silent at any given time, implying that infected T cells may be able to be activated to proliferate without inducing the expression of the integrated provirus or, alternatelively, may be able to proliferate without cellular activation. The results of this study suggest that the long, presumed correlation between the level of cellular and proviral activation may not be accurate and, therefore, requires further investigation.

20.
Cell Host Microbe ; 26(1): 73-85.e4, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295427

RESUMO

Evaluation of HIV cure strategies is complicated by defective proviruses that persist in ART-treated patients but are irrelevant to cure. Non-human primates (NHP) are essential for testing cure strategies. However, the persisting proviral landscape in ART-treated NHPs is uncharacterized. Here, we describe viral genomes persisting in ART-treated, simian immunodeficiency virus (SIV)-infected NHPs, simian-human immunodeficiency virus (SHIV)-infected NHPs, and humans infected with HIV-2, an SIV-related virus. The landscapes of persisting SIV, SHIV, and HIV-2 genomes are also dominated by defective sequences. However, there was a significantly higher fraction of intact SIV proviral genomes compared to ART-treated HIV-1 or HIV-2 infected humans. Compared to humans with HIV-1, SIV-infected NHPs had more hypermutated genomes, a relative paucity of clonal SIV sequences, and a lower frequency of deleted genomes. Finally, we report an assay for measuring intact SIV genomes which may have value in cure research.


Assuntos
Antirretrovirais/uso terapêutico , Variação Genética , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , HIV-2/efeitos dos fármacos , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Animais , Vírus Defeituosos/genética , Genoma Viral , Infecções por HIV/virologia , HIV-1/classificação , HIV-1/genética , HIV-2/classificação , HIV-2/genética , Humanos , Macaca mulatta , Provírus/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/classificação , Vírus da Imunodeficiência Símia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...