Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
JASA Express Lett ; 2(5): 054802, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-36154069

RESUMO

Complex acoustic systems typically present three-dimensional distributions of noise sources. Conventional acoustic imaging methods with planar microphone arrays are unsuitable for three-dimensional acoustic imaging, given the computational demands and the incapability to explicitly account for the presence of multiple sources. This paper proposes the use of global optimization methods to solve these shortcomings. An experiment with three incoherent speakers proved that this method can accurately determine the three-dimensional location and the respective sound level of each individual source. In addition, super-resolution is achieved beyond half the Rayleigh resolution limit.


Assuntos
Acústica , Modelos Teóricos , Ruído
3.
J Acoust Soc Am ; 146(2): 1085, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472575

RESUMO

Engine noise shielding is an important measure towards low-noise aircraft configurations. Such designs are supported by prediction tools that indicate high values for shielding of engine noise. Most prediction models approximate the complex nature of engine noise to simple noise sources such as monopoles or dipoles. This work compares predictions of noise shielding with experiments using different noise sources and shielding body geometries. The experiments considered in this work concern a monopole source shielded by a flat plate and a NACA 64-008 A wing, and a propeller shielded by the same wing. Comparisons between models and measurements are made by analysis of noise levels at individual microphones and using conventional beamforming. Results show that for the monopole cases the model predictions are in agreement with the experimental data, with an average deviation of 2-3 dB. The curvature of the leading edge of the wing influences the noise shielding results. The measured values of noise shielding of propeller noise are lower than those measured for the omni-directional source. Different types of source directivity are used to approximate the propeller in the predictions: monopole, dipole and a multi-source. The dipole approximation shows the best agreement with the experiments for the case of the propeller.

4.
J Acoust Soc Am ; 144(2): 842, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30180682

RESUMO

In this contribution bathymetric uncertainties induced by the use of frequency modulated (FM) signals for multi-beam-echo-sounder (MBES) measurements are quantified and their relevance for MBES bathymetric uncertainty predictions is assessed. When switching to FM, the quality of depth measurements can get deteriorated due to the Doppler effect and baseline decorrelation. The uncertainty due to the former is divided into second-order (imperfectness of the Doppler-range correction) and first-order (effect on beamsteering) effects. The latter also holds for continuous wave (CW) signals. Here, situations of relevance for measurements in the continental shelf and ship dynamics associated to rough and calm sea-states are considered, and the vertical uncertainty induced by the above sources is quantified. The influence of the Doppler effect depends on the sea state, but is found to potentially have a significant contribution to the MBES error budget for both FM and CW [nearly 82% (rough) and 68% (calm) of the total uncertainty]. The effect of baseline decorrelation depends on the actual pulse shape. For the specifications investigated, vertical uncertainties induced by this source are predicted to be larger for FM than that of CW. This is confirmed by a comparison between the modelled and measured effect on depth uncertainties when switching to FM.

5.
J Acoust Soc Am ; 143(1): 388, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29390756

RESUMO

Reducing aircraft noise is a major issue to be dealt with by the aerospace industry. In addition to lowering noise emissions from the engine and airframe, also the shielding of engine noise by the aircraft is considered as a promising means for reducing the perceived noise on the ground. In literature, noise shielding predictions indicate significant reductions in received noise levels for blended wing body configurations, but also for conventional aircraft with the engines placed above the wings. Little work has been done in assessing these potential shielding effects for full aircraft under real operational conditions. Therefore, in this work, noise shielding for current aircraft is investigated using both measurements and model predictions. The predictions are based on the Kirchhoff integral theory and the Modified Theory of Physical Optics. For the comparison between the predictions and measurements, Twenty Fokker 70 flyovers are considered. The data analysis approach for the extraction of shielding levels for aircraft under these operational conditions is presented. Directly under the flight path, the simulations predict an engine noise shielding of 6 dB overall sound pressure level. This is confirmed by some of the flyover data. On average, the measurements show somewhat lower shielding levels.

6.
J Acoust Soc Am ; 141(1): 453, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28147562

RESUMO

Conventional beamforming with a microphone array is a well-established method for localizing and quantifying sound sources. It provides estimates for the source strengths on a predefined grid by determining the agreement between the pressures measured and those modeled for a source located at the grid point under consideration. As such, conventional beamforming can be seen as an exhaustive search for those locations that provide a maximum match between measured and modeled pressures. In this contribution, the authors propose to, instead of the exhaustive search, use an efficient global optimization method to search for the source locations that maximize the agreement between model and measurement. Advantages are two-fold. First, the efficient optimization allows for inclusion of more unknowns, such as the source position in three-dimensional or environmental parameters such as the speed of sound. Second, the model for the received pressure field can be readily adapted to reflect, for example, the presence of more sound sources or environmental parameters that affect the received signals. For the work considered, the global optimization method, Differential Evolution, is selected. Results with simulated and experimental data show that sources can be accurately identified, including the distance from the source to the array.

7.
J Acoust Soc Am ; 135(6): 3305-15, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24907794

RESUMO

This contribution investigates the behavior of two important riverbed sediment classifiers, derived from multi-beam echo-sounder (MBES)-operating at 300 kHz-data, in very coarse sediment environments. These are the backscatter strength and the depth residuals. Four MBES data sets collected at different parts of rivers in the Netherlands are employed. From previous research the backscatter strength was found to increase for increasing mean grain sizes. Depth residuals, however, are often found to have lower values for coarser sediments. Investigation of the four data sets indicates that these statements are valid only for moderately coarse sediment such as sand. For very coarse sediments (e.g., coarse gravel) the backscatter strength is found to decrease and the depth residuals increase for increasing mean grain sizes. This is observed when the sediment mean grain size becomes significantly larger than the acoustic wavelength of the MBES (5 mm). Knowledge regarding this behavior is of high importance when using backscatter strength and depth residuals for sediment classification purposes as the reverse in behavior can induce ambiguity in the classification.

8.
J Acoust Soc Am ; 134(4): 2660-8, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24116404

RESUMO

The atmospheric wind and temperature can be estimated through the traveltimes of infrasound between pairs of receivers. The traveltimes can be obtained by infrasonic interferometry. In this study, the theory of infrasonic interferometry is verified and applied to modeled stratospherically refracted waves. Synthetic barograms are generated using a raytracing model and taking into account atmospheric attenuation, geometrical spreading, and phase shifts due to caustics. Two types of source wavelets are implemented for the experiments: blast waves and microbaroms. In both numerical experiments, the traveltimes between the receivers are accurately retrieved by applying interferometry to the synthetic barograms. It is shown that microbaroms can be used in practice to obtain the traveltimes of infrasound through the stratosphere, which forms the basis for retrieving the wind and temperature profiles.


Assuntos
Acústica , Simulação por Computador , Interferometria , Análise Numérica Assistida por Computador , Som , Temperatura , Vento , Acústica/instrumentação , Desenho de Equipamento , Explosões , Interferometria/instrumentação , Movimento (Física) , Espectrografia do Som , Fatores de Tempo , Transdutores
9.
J Acoust Soc Am ; 134(2): 959-70, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23927095

RESUMO

This contribution presents sediment classification results derived from different sources of data collected at the Dordtse Kil river, the Netherlands. The first source is a multi-beam echo-sounder (MBES). The second source is measurements taken with a gamma-ray scintillation detector, i.e., the Multi-Element Detection System for Underwater Sediment Activity (Medusa), towed over the sediments and measuring sediment natural radioactivity. Two analysis methods are employed for sediment classification based on the MBES data. The first is a Bayesian estimation method that uses the average backscatter data per beam and, therefore, is independent of the quality of the MBES calibration. The second is a model-based method that matches the measured backscatter curves to theoretical curves, predicted by a physics-based model. Medusa provides estimates for the concentrations of potassium, uranium, thorium, and cesium, known to be indicative for sediment properties, viz. mean grain size, silt content, and the presence of organic matter. In addition, a hydrophone attached to the Medusa system provides information regarding the sediment roughness. This paper presents an inter-comparison between the sediment classification results using the above-mentioned methods. It is shown that although originating from completely different sources, the MBES and Medusa provide similar information, revealing the same sediment distribution.


Assuntos
Acústica , Radiação de Fundo , Sedimentos Geológicos/classificação , Som , Água , Acústica/instrumentação , Teorema de Bayes , Sedimentos Geológicos/análise , Movimento (Física) , Oceanos e Mares , Tamanho da Partícula , Espalhamento de Radiação , Contagem de Cintilação , Processamento de Sinais Assistido por Computador , Espectrografia do Som , Fatores de Tempo , Transdutores
10.
J Acoust Soc Am ; 131(5): 3710-25, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22559348

RESUMO

Riverbed and seafloor sediment classification using acoustic remote sensing techniques is of high interest due to their high coverage capabilities at limited cost. This contribution presents the results of riverbed sediment classification using multi-beam echo-sounder data based on an empirical method. Two data sets are considered, both taken at the Waal River, namely Sint Andries and Nijmegen. This work is a follow-up to the work carried out by Amiri-Simkooei et al. [J. Acoust. Soc. Am. 126(4), 1724-1738 (2009)]. The empirical method bases the classification on features of the backscatter strength and depth residuals. A principal component analysis is used to identify the most appropriate and informative features. Clustering is then applied to the principal components resulting from this set of features to assign a sediment class to each measurement. The results show that the backscatter strength features discriminate between different classes based on the sediment properties, whereas the depth residual features discriminate classes based on riverbed forms such as the "fixed layer" (stone having riprap structure) and riverbed ripples. Combination of these two sets of features is highly recommended because they provide complementary information on both the composition and the structure of the riverbed.

11.
J Acoust Soc Am ; 129(5): 2878-88, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21568391

RESUMO

Acoustic remote sensing techniques for mapping sediment properties are of interest due to their low costs and high coverage. Model-based approaches directly couple the acoustic signals to sediment properties. Despite the limited coverage of the single-beam echosounder (SBES), it is widely used. Having available model-based SBES classification tools, therefore, is important. Here, two model-based approaches of different complexity are compared to investigate their practical applicability. The first approach is based on matching the echo envelope. It maximally exploits the information available in the signal but requires complex modeling and optimization. To minimize computational costs, the efficient differential evolution method is used. The second approach reduces the information of the signal to energy only and directly relates this to the reflection coefficient to obtain quantitative information about the sediment parameters. The first approach provides information over a variety of sediment types. In addition to sediment mean grain size, it also provides estimates for the spectral strength and volume scattering parameter. The need to account for all three parameters is demonstrated, justifying computational expenses. In the second approach, the lack of information on these parameters and the limited SBES beamwidth are demonstrated to hamper the conversion of echo energy to reflection coefficient.


Assuntos
Acústica/instrumentação , Sedimentos Geológicos/classificação , Modelos Teóricos , Biologia Marinha/instrumentação , Matemática , Tamanho da Partícula , Som , Água
12.
J Acoust Soc Am ; 126(4): 1724-38, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19813788

RESUMO

A method has recently been developed that employs multi-beam echo-sounder backscatter data to both obtain the number of sediment classes and discriminate between them by applying the Bayes decision rule to multiple hypotheses [Simons and Snellen, Appl. Acoust. 70, 1258-1268 (2009)]. In deep water, the number of scatter pixels within the beam footprint is large enough to ensure Gaussian distributions for the backscatter strengths and to increase the discriminative power between acoustic classes. In very shallow water (<10 m), however, this number is too small. This paper presents an extension of this high-frequency methodology for these environments, together with a demonstration of its performance using backscatter data from the river Waal, The Netherlands. The objective of this work is threefold. (i) Increasing the discriminating power of the classification method: high-resolution bathymetry data allow precise bottom slope corrections for obtaining the true incident angle, and the high-resolution backscatter data reduce the statistical fluctuations via an averaging procedure. (ii) Performing a correlation analysis: the dependence of acoustic backscatter classification on sediment physical properties is verified by observing a significant correlation of 0.75 (and a disattenuated correlation of 0.90) between the classification results and sediment mean grain size. (iii) Enhancing the statistical description of the backscatter intensities: angular evolution of the K-distribution shape parameter indicates that the riverbed is a rough surface, in agreement with the results of the core analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...