Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
mBio ; : e0144524, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953638

RESUMO

Neurotropic alphaherpesviruses, including herpes simplex virus type 1 and pseudorabies virus, establish a lifelong presence within the peripheral nervous system of their mammalian hosts. Upon entering cells, two conserved tegument proteins, pUL36 and pUL37, traffic DNA-containing capsids to nuclei. These proteins support long-distance retrograde axonal transport and invasion of the nervous system in vivo. To better understand how pUL36 and pUL37 function, recombinant viral particles carrying BioID2 fused to these proteins were produced to biotinylate cellular proteins in their proximity (<10 nm) during infection. Eighty-six high-confidence host proteins were identified by mass spectrometry and subsequently targeted by CRISPR-Cas9 gene editing to assess their contributions to early infection. Proteins were identified that both supported and antagonized infection in immortalized human epithelial cells. The latter included zyxin, a protein that localizes to focal adhesions and regulates actin cytoskeletal dynamics. Zyxin knockout cells were hyper-permissive to infection and could be rescued with even modest expression of GFP-zyxin. These results provide a resource for studies of the virus-cell interface and identify zyxin as a novel deterrent to alphaherpesvirus infection.IMPORTANCENeuroinvasive alphaherpesviruses are highly prevalent with many members found across mammals [e.g., herpes simplex virus type 1 (HSV-1) in humans and pseudorabies virus in pigs]. HSV-1 causes a range of clinical manifestations from cold sores to blindness and encephalitis. There are no vaccines or curative therapies available for HSV-1. A fundamental feature of these viruses is their establishment of lifelong infection of the nervous system in their respective hosts. This outcome is possible due to a potent neuroinvasive property that is coordinated by two proteins: pUL36 and pUL37. In this study, we explore the cellular protein network in proximity to pUL36 and pUL37 during infection and examine the impact of knocking down the expression of these proteins upon infection.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38698947

RESUMO

Background: Inpatient behavioral health units (BHUs) had unique challenges in implementing interventions to mitigate coronavirus disease 2019 (COVID-19) transmission, in part due to socialization in BHU settings. The objective of this study was to identify the transmission routes and the efficacy of the mitigation strategies employed during a COVID-19 outbreak in an inpatient BHU during the Omicron surge from December 2021 to January 2022. Methods: An outbreak investigation was performed after identifying 2 COVID-19-positive BHU inpatients on December 16 and 20, 2021. Mitigation measures involved weekly point prevalence testing for all inpatients, healthcare workers (HCWs), and staff, followed by infection prevention mitigation measures and molecular surveillance. Whole-genome sequencing on a subset of COVID-19-positive individuals was performed to identify the outbreak source. Finally, an outbreak control sustainability plan was formulated for future BHU outbreak resurgences. Results: We identified 35 HCWs and 8 inpatients who tested positive in the BHU between December 16, 2021, and January 17, 2022. We generated severe acute respiratory coronavirus virus 2 (SARS-CoV-2) genomes from 15 HCWs and all inpatients. Phylogenetic analyses revealed 3 distinct but genetically related clusters: (1) an HCW and inpatient outbreak likely initiated by staff, (2) an HCW and inpatient outbreak likely initiated by an inpatient visitor, and (3) an HCW-only cluster initiated by staff. Conclusions: Distinct transmission clusters are consistent with multiple, independent SARS-CoV-2 introductions with further inpatient transmission occurring in communal settings. The implemented outbreak control plan comprised of enhanced personal protective equipment requirements, limited socialization, and molecular surveillance likely minimized disruptions to patient care as a model for future pandemics.

3.
Nat Commun ; 15(1): 3374, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643200

RESUMO

Respiratory Syncytial Virus (RSV) is a leading cause of acute respiratory tract infection, with the greatest impact on infants, immunocompromised individuals, and older adults. RSV prevalence decreased substantially in the United States (US) following the implementation of COVID-19-related non-pharmaceutical interventions but later rebounded with abnormal seasonality. The biological and epidemiological factors underlying this altered behavior remain poorly defined. In this retrospective cohort study from 2009 to 2023 in Chicago, Illinois, US, we examined RSV epidemiology, clinical severity, and genetic diversity. We found that changes in RSV diagnostic platforms drove increased detections in outpatient settings post-2020 and that hospitalized adults infected with RSV-A were at higher risk of intensive care admission than those with RSV-B. While population structures of RSV-A remained unchanged, RSV-B exhibited a genetic shift into geographically distinct clusters. Mutations in the antigenic regions of the fusion protein suggest convergent evolution with potential implications for vaccine and therapeutic development.


Assuntos
COVID-19 , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Lactente , Humanos , Estados Unidos/epidemiologia , Idoso , Estudos Retrospectivos , Pandemias , COVID-19/epidemiologia , Vírus Sincicial Respiratório Humano/genética
4.
PLoS One ; 19(3): e0299082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446806

RESUMO

SARS-CoV-2 has claimed several million lives since its emergence in late 2019. The ongoing evolution of the virus has resulted in the periodic emergence of new viral variants with distinct fitness advantages, including enhanced transmission and immune escape. While several SARS-CoV-2 variants of concern trace their origins back to the African continent-including Beta, Eta, and Omicron-most countries in Africa remain under-sampled in global genomic surveillance efforts. In an effort to begin filling these knowledge gaps, we conducted retrospective viral genomic surveillance in Guinea from October 2020 to August 2021. We found that SARS-CoV-2 clades 20A, 20B, and 20C dominated throughout 2020 until the coincident emergence of the Alpha and Eta variants of concern in January 2021. The Alpha variant remained dominant throughout early 2021 until the arrival of the Delta variant in July. Surprisingly, despite the small sample size of our study, we also found the persistence of the early SARS-CoV-2 clade 19B as late as April 2021. Together, these data help fill in our understanding of the SARS-CoV-2 population dynamics in West Africa early in the COVID-19 pandemic.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Guiné/epidemiologia , SARS-CoV-2/genética , Pandemias , Estudos Retrospectivos , COVID-19/epidemiologia , África Ocidental/epidemiologia , Genômica
5.
JCI Insight ; 9(8)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502186

RESUMO

BACKGROUNDSurvivors of pneumonia, including SARS-CoV-2 pneumonia, are at increased risk for cognitive dysfunction and dementia. In rodent models, cognitive dysfunction following pneumonia has been linked to the systemic release of lung-derived pro-inflammatory cytokines. Microglia are poised to respond to inflammatory signals from the circulation, and their dysfunction has been linked to cognitive impairment in murine models of dementia and in humans.METHODSWe measured levels of 55 cytokines and chemokines in bronchoalveolar lavage fluid and plasma from 341 patients with respiratory failure and 13 healthy controls, including 93 unvaccinated patients with COVID-19 and 203 patients with other causes of pneumonia. We used flow cytometry to sort neuroimmune cells from postmortem brain tissue from 5 patients who died from COVID-19 and 3 patients who died from other causes for single-cell RNA-sequencing.RESULTSMicroglia from patients with COVID-19 exhibited a transcriptomic signature suggestive of their activation by circulating pro-inflammatory cytokines. Peak levels of pro-inflammatory cytokines were similar in patients with pneumonia irrespective of etiology, but cumulative cytokine exposure was higher in patients with COVID-19. Treatment with corticosteroids reduced expression of COVID-19-specific cytokines.CONCLUSIONProlonged lung inflammation results in sustained elevations in circulating cytokines in patients with SARS-CoV-2 pneumonia compared with those with pneumonia secondary to other pathogens. Microglia from patients with COVID-19 exhibit transcriptional responses to inflammatory cytokines. These findings support data from rodent models causally linking systemic inflammation with cognitive dysfunction in pneumonia and support further investigation into the role of microglia in pneumonia-related cognitive dysfunction.FUNDINGSCRIPT U19AI135964, UL1TR001422, P01AG049665, P01HL154998, R01HL149883, R01LM013337, R01HL153122, R01HL147290, R01HL147575, R01HL158139, R01ES034350, R01ES027574, I01CX001777, U01TR003528, R21AG075423, T32AG020506, F31AG071225, T32HL076139.


Assuntos
Citocinas , Pulmão , Microglia , Pneumonia , Citocinas/metabolismo , Pulmão/metabolismo , COVID-19 , Encéfalo , Autopsia , Humanos , Camundongos , Disfunção Cognitiva , Imunofluorescência , Pneumonia/metabolismo , Interleucina-1beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
6.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464055

RESUMO

The persistence of HIV-1 in long-lived latent reservoirs during suppressive antiretroviral therapy (ART) remains one of the principal barriers to a functional cure. Blocks to transcriptional elongation play a central role in maintaining the latent state, and several latency reversal strategies focus on the release of positive transcription elongation factor b (P-TEFb) from sequestration by negative regulatory complexes, such as the 7SK complex and BRD4. Another major cellular reservoir of P-TEFb is in Super Elongation Complexes (SECs), which play broad regulatory roles in host gene expression. Still, it is unknown if the release of P-TEFb from SECs is a viable latency reversal strategy. Here, we demonstrate that the SEC is not required for HIV-1 replication in primary CD4+ T cells and that a small molecular inhibitor of the P-TEFb/SEC interaction (termed KL-2) increases viral transcription. KL-2 acts synergistically with other latency reversing agents (LRAs) to reactivate viral transcription in several cell line models of latency in a manner that is, at least in part, dependent on the viral Tat protein. Finally, we demonstrate that KL-2 enhances viral reactivation in peripheral blood mononuclear cells (PBMCs) from people living with HIV on suppressive ART, most notably in combination with inhibitor of apoptosis protein antagonists (IAPi). Taken together, these results suggest that the release of P-TEFb from cellular SECs may be a novel route for HIV-1 latency reactivation.

7.
Cell Rep Med ; 5(1): 101361, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232695

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with enhanced transmissibility and immune escape have emerged periodically throughout the coronavirus disease 2019 (COVID-19) pandemic, but the impact of these variants on disease severity has remained unclear. In this single-center, retrospective cohort study, we examined the association between SARS-CoV-2 clade and patient outcome over a two-year period in Chicago, Illinois. Between March 2020 and March 2022, 14,252 residual diagnostic specimens were collected from SARS-CoV-2-positive inpatients and outpatients alongside linked clinical and demographic metadata, of which 2,114 were processed for viral whole-genome sequencing. When controlling for patient demographics and vaccination status, several viral clades were associated with risk for hospitalization, but this association was negated by the inclusion of population-level confounders, including case count, sampling bias, and shifting standards of care. These data highlight the importance of integrating non-virological factors into disease severity and outcome models for the accurate assessment of patient risk.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Epidemiologia Molecular , Estudos Retrospectivos , Teste para COVID-19
8.
AIDS Behav ; 28(1): 300-309, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37812271

RESUMO

Young men who have sex with men (YMSM) in Nigeria are ten times more likely to be living with HIV-1 than other young men. Due to stigma and criminalization of same-sex sexual behavior, YMSM sexual networks are likely to overlap with those of the general population, leading to a generalized HIV-1 epidemic. Due to limited research on social/sexual network dynamics related to HIV-1 in Nigeria, our study focused on YMSM and sought to assess the feasibility and acceptability of collecting social and sexual network data in Network Canvas from individuals newly diagnosed with HIV-1 in Ibadan, Nigeria. The Network Canvas software was piloted at three sites in Ibadan, Nigeria to collect social/sexual network data from 151 individuals newly diagnosed with HIV-1. Our study sample included 37.7% YMSM; participants reported a mean of 2.6 social alters and 2.6 sexual alters. From the 151 egos and 634 alters, 85 potential unique individuals (194 total) were identified; 65 egos/alters were collapsed into 25 unique individuals. Our success collecting network data from individuals newly diagnosed with HIV-1 in Ibadan demonstrates clear feasibility and acceptability of the approach and the use of Network Canvas to capture and manage these data.


Assuntos
Infecções por HIV , Soropositividade para HIV , Minorias Sexuais e de Gênero , Masculino , Humanos , Homossexualidade Masculina , Nigéria/epidemiologia , Infecções por HIV/diagnóstico , Infecções por HIV/epidemiologia , Comportamento Sexual
9.
Diagn Microbiol Infect Dis ; 108(1): 116120, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898036

RESUMO

Accurate and timely diagnosis for COVID-19 diagnosis allows highly effective antiviral medications to be prescribed. The DASH™ Rapid PCR System is a sample-to-answer point-of-care platform combining state-of-the-art PCR kinetics with sequence specific hybridization. The platform's first assay, the DASH™ SARS-CoV-2/S test for anterior nares direct swab specimens, received FDA Emergency Use Authorization in March 2022 for point-of-care use. Here we report the analytical characteristics of the assay including limit of detection, dynamic range, and robustness of SARS-CoV-2 variant detection. The limit of detection was determined by testing swabs contrived with one hundred copies of wild type or Omicron BA.5 virus and detecting 20/20 and 19/20, respectively. The dynamic range was assessed with contrived swabs containing 102-106 copies; the log-linear relationship between Cq and copy input was plotted, and the qPCR efficiency calculated from the slope of the line was 101.4%. Detection of seven SARS-CoV-2 variants was demonstrated.


Assuntos
COVID-19 , Sistemas Automatizados de Assistência Junto ao Leito , Humanos , SARS-CoV-2/genética , Teste para COVID-19 , COVID-19/diagnóstico , Sensibilidade e Especificidade
11.
Nat Biomed Eng ; 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012307

RESUMO

The genetic modification of T cells has advanced cellular immunotherapies, yet the delivery of biologics specifically to T cells remains challenging. Here we report a suite of methods for the genetic engineering of cells to produce extracellular vesicles (EVs)-which naturally encapsulate and transfer proteins and nucleic acids between cells-for the targeted delivery of biologics to T cells without the need for chemical modifications. Specifically, the engineered cells secreted EVs that actively loaded protein cargo via a protein tag and that displayed high-affinity T-cell-targeting domains and fusogenic glycoproteins. We validated the methods by engineering EVs that delivered Cas9-single-guide-RNA complexes to ablate the gene encoding the C-X-C chemokine co-receptor type 4 in primary human CD4+ T cells. The strategy is amenable to the targeted delivery of biologics to other cell types.

12.
Res Sq ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37790412

RESUMO

Severe COVID-19 and post-acute sequelae of SARS-CoV-2 infection are associated with neurological complications that may be linked to direct infection of the central nervous system (CNS), but the selective pressures ruling neuroinvasion are poorly defined. Here, we assessed SARS-CoV-2 evolution in the lung versus CNS of infected mice. Higher levels of viral diversity were observed in the CNS than the lung after intranasal challenge with a high frequency of mutations in the Spike furin cleavage site (FCS). Deletion of the FCS significantly attenuated virulence after intranasal challenge, with lower viral titers and decreased morbidity compared to the wild-type virus. Intracranial inoculation of the FCS-deleted virus, however, was sufficient to restore virulence. After intracranial inoculation, both viruses established infection in the lung, but this required reversion of the FCS deletion. Cumulatively, these data suggest a critical role for the FCS in determining SARS-CoV-2 tropism and compartmentalization with possible implications for the treatment of neuroinvasive COVID-19.

13.
Virol J ; 20(1): 246, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891657

RESUMO

BACKGROUND: Persistent SARS-CoV-2 infection in immunocompromised hosts is thought to contribute to viral evolution by facilitating long-term natural selection and viral recombination in cases of viral co-infection or superinfection. However, there are limited data on the longitudinal intra-host population dynamics of SARS-CoV-2 co-infection/superinfection, especially in pediatric populations. Here, we report a case of Delta-Omicron superinfection in a hospitalized, immunocompromised pediatric patient. METHODS: We conducted Illumina whole genome sequencing (WGS) for longitudinal specimens to investigate intra-host dynamics of SARS-CoV-2 strains. Topoisomerase PCR cloning of Spike open-reading frame and Sanger sequencing of samples was performed for four specimens to validate the findings. Analysis of publicly available SARS-CoV-2 sequence data was performed to investigate the co-circulation and persistence of SARS-CoV-2 variants. RESULTS: Results of WGS indicate the patient was initially infected with the SARS-CoV-2 Delta variant before developing a SARS-CoV-2 Omicron variant superinfection, which became predominant. Shortly thereafter, viral loads decreased below the level of detection before resurgence of the original Delta variant with no residual trace of Omicron. After 54 days of persistent infection, the patient tested negative for SARS-CoV-2 but ultimately succumbed to a COVID-19-related death. Despite protracted treatment with remdesivir, no antiviral resistance mutations emerged. These results indicate a unique case of persistent SARS-CoV-2 infection with the Delta variant interposed by a transient superinfection with the Omicron variant. Analysis of publicly available sequence data suggests the persistence and ongoing evolution of Delta subvariants despite the global predominance of Omicron, potentially indicative of continued transmission in an unknown population or niche. CONCLUSION: A better understanding of SARS-CoV-2 intra-host population dynamics, persistence, and evolution during co-infections and/or superinfections will be required to continue optimizing patient care and to better predict the emergence of new variants of concern.


Assuntos
COVID-19 , Coinfecção , Superinfecção , Humanos , Criança , SARS-CoV-2/genética , Hospedeiro Imunocomprometido
15.
mBio ; 14(5): e0042023, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37676006

RESUMO

IMPORTANCE: Unlike humans, mice are unable to support HIV-1 infection. This is due, in part, to a constellation of defined minor, species-specific differences in conserved host proteins needed for viral gene expression. Here, we used precision CRISPR/Cas9 gene editing to engineer a "mousified" version of one such host protein, cyclin T1 (CCNT1), in human T cells. CCNT1 is essential for efficient HIV-1 transcription, making it an intriguing target for gene-based inactivation of virus replication. We show that isogenic cell lines engineered to encode CCNT1 bearing a single mouse-informed amino acid change (tyrosine in place of cysteine at position 261) exhibit potent, durable, and broad-spectrum resistance to HIV-1 and other pathogenic lentiviruses, and with no discernible impact on host cell biology. These results provide proof of concept for targeting CCNT1 in the context of one or more functional HIV-1 cure strategies.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Camundongos , Animais , HIV-1/fisiologia , Roedores , Linhagem Celular , Ciclina T/genética , Ciclina T/metabolismo , Expressão Gênica , Linfócitos T
16.
medRxiv ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37732212

RESUMO

SARS-CoV-2 is spread through exhaled breath of infected individuals. A fundamental question in understanding transmission of SARS-CoV-2 is how much virus an individual is exhaling into the environment while they breathe, over the course of their infection. Research on viral load dynamics during COVID-19 infection has focused on internal swab specimens, which provide a measure of viral loads inside the respiratory tract, but not on breath. Therefore, the dynamics of viral shedding on exhaled breath over the course of infection are poorly understood. Here, we collected exhaled breath specimens from COVID-19 patients and used RTq-PCR to show that numbers of exhaled SARS-CoV-2 RNA copies during COVID-19 infection do not decrease significantly until day 8 from symptom-onset. COVID-19-positive participants exhaled an average of 80 SARS-CoV-2 viral RNA copies per minute during the first 8 days of infection, with significant variability both between and within individuals, including spikes over 800 copies a minute in some patients. After day 8, there was a steep drop to levels nearing the limit of detection, persisting for up to 20 days. We further found that levels of exhaled viral RNA increased with self-rated symptom-severity, though individual variation was high. Levels of exhaled viral RNA did not differ across age, sex, time of day, vaccination status or viral variant. Our data provide a fine-grained, direct measure of the number of SARS-CoV-2 viral copies exhaled per minute during natural breathing-including 312 breath specimens collected multiple times daily over the course of infection-in order to fill an important gap in our understanding of the time course of exhaled viral loads in COVID-19.

17.
Res Sq ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37720034

RESUMO

SARS-CoV-2 initiates infection in the conducting airways, which rely on mucocilliary clearance (MCC) to minimize pathogen penetration. However, it is unclear how MCC impacts SARS-CoV-2 spread after infection is established. To understand viral spread at this site, we performed live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 9 days. Fluorescent markers for cilia and mucus allowed longitudinal monitoring of MCC, ciliary motion, and infection. The number of infected cells peaked at 4 days post-infection in characteristic foci that followed mucus movement. Inhibition of MCC using physical and genetic perturbations limited foci. Later in infection, MCC was diminished despite relatively subtle ciliary function defects. Resumption of MCC and infection spread after mucus removal suggests that mucus secretion mediates this effect. We show that MCC facilitates SARS-CoV-2 spread early in infection while later decreases in MCC inhibit spread, suggesting a complex interplay between SARS-CoV-2 and MCC.

18.
Nature ; 620(7976): 1025-1030, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532928

RESUMO

HIV-1 remains a global health crisis1, highlighting the need to identify new targets for therapies. Here, given the disproportionate HIV-1 burden and marked human genome diversity in Africa2, we assessed the genetic determinants of control of set-point viral load in 3,879 people of African ancestries living with HIV-1 participating in the international collaboration for the genomics of HIV3. We identify a previously undescribed association signal on chromosome 1 where the peak variant associates with an approximately 0.3 log10-transformed copies per ml lower set-point viral load per minor allele copy and is specific to populations of African descent. The top associated variant is intergenic and lies between a long intergenic non-coding RNA (LINC00624) and the coding gene CHD1L, which encodes a helicase that is involved in DNA repair4. Infection assays in iPS cell-derived macrophages and other immortalized cell lines showed increased HIV-1 replication in CHD1L-knockdown and CHD1L-knockout cells. We provide evidence from population genetic studies that Africa-specific genetic variation near CHD1L associates with HIV replication in vivo. Although experimental studies suggest that CHD1L is able to limit HIV infection in some cell types in vitro, further investigation is required to understand the mechanisms underlying our observations, including any potential indirect effects of CHD1L on HIV spread in vivo that our cell-based assays cannot recapitulate.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Variação Genética , Infecções por HIV , HIV-1 , Carga Viral , Humanos , Linhagem Celular , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Infecções por HIV/genética , HIV-1/crescimento & desenvolvimento , HIV-1/fisiologia , Carga Viral/genética , África , Cromossomos Humanos Par 1/genética , Alelos , RNA Longo não Codificante/genética , Replicação Viral
19.
Protein Sci ; 32(8): e4712, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37354015

RESUMO

Antiviral therapeutics to treat SARS-CoV-2 are needed to diminish the morbidity of the ongoing COVID-19 pandemic. A well-precedented drug target is the main viral protease (MPro ), which is targeted by an approved drug and by several investigational drugs. Emerging viral resistance has made new inhibitor chemotypes more pressing. Adopting a structure-based approach, we docked 1.2 billion non-covalent lead-like molecules and a new library of 6.5 million electrophiles against the enzyme structure. From these, 29 non-covalent and 11 covalent inhibitors were identified in 37 series, the most potent having an IC50 of 29 and 20 µM, respectively. Several series were optimized, resulting in low micromolar inhibitors. Subsequent crystallography confirmed the docking predicted binding modes and may template further optimization. While the new chemotypes may aid further optimization of MPro inhibitors for SARS-CoV-2, the modest success rate also reveals weaknesses in our approach for challenging targets like MPro versus other targets where it has been more successful, and versus other structure-based techniques against MPro itself.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Pandemias , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Proteínas não Estruturais Virais/química , Antivirais/farmacologia , Antivirais/química
20.
Vaccine ; 41(21): 3367-3379, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37100721

RESUMO

Recent work demonstrating that asymptomatic carriers of P. falciparum parasites make up a large part of the infectious reservoir highlights the need for an effective malaria vaccine. Given the historical challenges of vaccine development, multiple parasite stages have been targeted, including the sexual stages required for transmission. Using flow cytometry to efficiently screen for P. falciparum gamete/zygote surface reactivity, we identified 82 antibodies that bound live P. falciparum gametes/zygotes. Ten antibodies had significant transmission-reducing activity (TRA) in a standard membrane feeding assay and were subcloned along with 9 nonTRA antibodies as comparators. After subcloning, only eight of the monoclonals obtained have significant TRA. These eight TRA mAbs do not recognize epitopes present in any of the current recombinant transmission-blocking vaccine candidates, Pfs230D1M, Pfs48/45.6C, Pf47 D2 and rPfs25. One TRA mAb immunoprecipitates two surface antigens, Pfs47 and Pfs230, that are expressed by both gametocytes and gametes/zygotes. These two proteins have not previously been reported to associate and the recognition of both by a single TRA mAb suggests the Pfs47/Pfs230 complex is a new vaccine target. In total, Pfs230 was the dominant target antigen, with five of the eight TRA mAbs and 8 of 11 nonTRA gamete/zygote surface reactive mAbs interacting with Pfs230. Of the three remaining TRA mAbs, two recognized non-reduced, parasite-produced Pfs25 and one bound non-reduced, parasite-produced Pfs48/45. None of the TRA mAbs bound protein on an immunoblot of reduced gamete/zygote extract and two TRA mAbs were immunoblot negative, indicating none of the new TRA epitopes are linear. The identification of eight new TRA mAbs that bind epitopes not included in any of the constructs currently under advancement as transmission-blocking vaccine candidates may provide new targets worthy of further study.


Assuntos
Vacinas Antimaláricas , Malária Falciparum , Humanos , Plasmodium falciparum , Anticorpos Bloqueadores , Epitopos , Anticorpos Antiprotozoários , Anticorpos Monoclonais , Proteínas de Protozoários , Antígenos de Protozoários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...