Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36780585

RESUMO

Site-selective functionalization of unactivated C(sp3)-H centers is challenging because of the ubiquity and strength of alkyl C-H bonds. Herein, we disclose a position-selective C(sp3)-C(sp2) cross-coupling reaction. This process engages C(sp3)-H bonds and aryl bromides, utilizing catalytic quantities of a photoredox-capable molecule and a nickel precatalyst. Using this technology, selective C-H functionalization arises owing to a 1,6-hydrogen atom transfer (HAT) process that is guided by a pendant alcohol-anchored sulfamate ester. These transformations proceed directly from N-H bonds, in contrast to previous directed, radical-mediated, C-H arylation processes, which have relied on prior oxidation of the reactive nitrogen center in reactions with nucleophilic arenes. Moreover, these conditions promote arylation at secondary centers in good yields with excellent selectivity.

2.
Chem Rev ; 122(2): 2353-2428, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34623809

RESUMO

For more than 70 years, nitrogen-centered radicals have been recognized as potent synthetic intermediates. This review is a survey designed for use by chemists engaged in target-oriented synthesis. This review summarizes the recent paradigm shift in access to and application of N-centered radicals enabled by visible-light photocatalysis. This shift broadens and streamlines approaches to many small molecules because visible-light photocatalysis conditions are mild. Explicit attention is paid to innovative advances in N-X bonds as radical precursors, where X = Cl, N, S, O, and H. For clarity, key mechanistic data is noted, where available. Synthetic applications and limitations are summarized to illuminate the tremendous utility of photocatalytically generated nitrogen-centered radicals.


Assuntos
Luz , Nitrogênio , Catálise , Técnicas de Química Sintética , Nitrogênio/química
3.
J Org Chem ; 85(10): 6380-6391, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32312047

RESUMO

A general method for the N-arylation of sulfamides with aryl bromides is described. The protocol leverages a dual-catalytic system, with [Ir(ppy)2(dtbbpy)]PF6 as a photosensitizer, NiBr2·glyme as a precatalyst, and 1,8-diazabicyclo(5.4.0)undec-7-ene (DBU) as a base, and proceeds at room temperature under visible light irradiation. Using these tactics, aryl boronic esters and aryl chlorides can be carried through the reaction untouched. The developed reactions efficiently engage simple bromoarenes and primary sulfamides in between 66% and quantitative yields. For more challenging substrates, such as secondary sulfamides, the reaction efficiency is documented. Thereby, these methods complement the known Buchwald-Hartwig coupling methods for N-arylation of sulfamides.


Assuntos
Níquel , Paládio , Brometos , Catálise , Ésteres
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...