Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Biotechnol (NY) ; 24(5): 843-855, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35943638

RESUMO

Effects of CRISPR/Cas9 knockout of the melanocortin-4 receptor (mc4r) gene in channel catfish, Ictalurus punctatus, were investigated. Three sgRNAs targeting the channel catfish mc4r gene in conjunction with Cas9 protein were microinjected in embryos and mutation rate, inheritance, and growth were studied. Efficient mutagenesis was achieved as demonstrated by PCR, Surveyor® assay, and DNA sequencing. An overall mutation rate of 33% and 33% homozygosity/bi-allelism was achieved in 2017. Approximately 71% of progeny inherited the mutation. Growth was generally higher in MC4R mutants than controls (CNTRL) at all life stages and in both pond and tank environments. There was a positive relationship between zygosity and growth, with F1 homozygous/bi-allelic mutants reaching market size 30% faster than F1 heterozygotes in earthen ponds (p = 0.022). At the stocker stage (~ 50 g), MC4R × MC4R mutants generated in 2019 were 40% larger than the mean of combined CNTRL × CNTRL families (p = 0.005) and 54% larger than F1 MC4R × CNTRL mutants (p = 0.001) indicating mutation may be recessive. With a high mutation rate and inheritance of the mutation as well as improved growth, the use of gene-edited MC4R channel catfish appears to be beneficial for application on commercial farms.


Assuntos
Ictaluridae , Animais , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Humanos , Ictaluridae/genética , Ictaluridae/metabolismo , Mutação , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo
2.
Fish Shellfish Immunol ; 126: 311-317, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35636698

RESUMO

Constructs bearing the cecropin B gene from the moth Hyalophora cecropia, driven by the cytomegalovirus (CMV) promoter, or the common carp beta-actin (ß-actin) promoter were transferred to channel catfish, Ictalurus punctatus via electroporation. One F3 channel catfish family transgenic for cecropin transgene driven by the CMV promoter, and one F1 channel catfish family transgenic for cecropin transgene driven by the common carp ß-actin promoter were produced. F3 and F1 individuals exhibited enhanced disease resistance when challenged in tanks with Edwardsiella ictaluri, the causative agent of enteric septicemia of catfish (ESC). Inheritance of the transgene by the F1 and F3 generation was 15% and 60%, respectively. Growth rates of the cecropin transgenic and non-transgenic full siblings (controls) channel catfish were not different (P > 0.05). All transgenic fish showed significant resistance to infection by ESC at day 3 and day 4 post exposure (P = 0.005). No correlation was detected between body weight and time to death for all genetic groups (P = 0.34). Results of our study confirmed that genetic enhancement of E. ictaluri resistance can be achieved by cecropin transgenesis in channel catfish. In addition to survival rate, improving survival time is essential because the extension of survival time gives a better chance to apply treatments to stop the bacterial infection.


Assuntos
Peixes-Gato , Cecropinas , Infecções por Citomegalovirus , Infecções por Enterobacteriaceae , Doenças dos Peixes , Ictaluridae , Actinas/genética , Animais , Peixes-Gato/genética , Edwardsiella ictaluri/fisiologia , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Técnicas de Transferência de Genes , Ictaluridae/genética , Ictaluridae/microbiologia
3.
Mar Biotechnol (NY) ; 24(3): 513-523, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35416602

RESUMO

Omega-3 polyunsaturated fatty acids (n-3 PUFAs), particularly eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3), play a very important role in human health. Channel catfish (Ictalurus punctatus) is one of the leading freshwater aquaculture species in the USA, but has low levels of EPA and DHA compared to some fish such as salmon. To improve EPA and DHA content, a modification of the n-3 PUFA biosynthetic pathway was achieved through the insertion of an elovl2 transgene isolated from masu salmon (Oncorhynchus masou) driven by a carp ß-actin promoter using a two-hit by gRNA and two oligos with a targeting plasmid (2H2OP) CRISPR/Cas9 approach. Integration rate of the transgene was high (37.5%) and detected in twelve different tissues of P1 transgenic fish with tissue-specific gene expression. Liver and muscle had relative high gene expression (13.4- and 9.2-fold change, respectively). Fatty acid analysis showed DHA content in the muscle from transgenic fish was 1.62-fold higher than in non-transgenic fish (P < 0.05). Additionally, total n-3 PUFAs and omega-6 polyunsaturated fatty acids (n-6 PUFAs) increased to 1.41-fold and 1.50-fold, respectively, suggesting the ß-actin-elovl2 transgene improved biosynthesis of PUFAs in channel catfish as a whole. The n-9 fatty acid level decreased in the transgenic fish compared to the control. Morphometric analysis showed that there were significant differences between injected fish with sgRNAs (including positive and negative fish) and sham-injected controls (P < 0.001). Potential off-target effects are likely the major factor responsible for morphological deformities. Optimization of sgRNA design to maximize activity and reduce off-target effects of CRISPR/Cas9 should be examined in future transgenic research, but this research shows a promising first step in the improvement of n-3 PUFAs in channel catfish.


Assuntos
Ácidos Graxos Ômega-3 , Ictaluridae , Oncorhynchus , Actinas/genética , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Ácidos Docosa-Hexaenoicos , Ácido Eicosapentaenoico , Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Técnicas de Transferência de Genes , Ictaluridae/genética , Ictaluridae/metabolismo , Oncorhynchus/genética , Salmão/genética
4.
J Aquat Anim Health ; 33(3): 178-189, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34121235

RESUMO

One of the major goals in aquaculture is to protect fish against infectious diseases as disease outbreaks could lead to economic losses if not controlled. Antimicrobial peptides (AMPs), a class of highly conserved peptides known to possess direct antimicrobial activities against invading pathogens, were evaluated for their ability to protect Channel Catfish Ictalurus punctatus and hybrid catfish (female Channel Catfish × male Blue Catfish I. furcatus) against infection caused by the fish pathogen Aeromonas hydrophila ML09-119. To identify effective peptides, the minimum inhibitory concentrations against bacterial pathogens Edwardsiella ictaluri S97-773, Edwardsiella piscicida E22-10, A. hydrophila ML09-119, Aeromonas veronii 03X03876, and Flavobacterium columnare GL-001 were determined in vitro. In general and overall, cathelicidins derived from alligator and sea snake exhibited more potent and rapid antimicrobial activities against the tested catfish pathogens as compared to cecropin and pleurocidin AMPs and ampicillin, the antibiotic control. When the peptides (2.5 µg of peptide/g of fish) were injected into fish and simultaneously challenged with A. hydrophila through immersion, increased survival rates in Channel Catfish and hybrid catfish were observed in both cathelicidin (alligator and sea snake) treatments as compared to other peptides and the infected control (P < 0.001) with alligator cathelicidin being the overall best treatment. Bacterial numbers in the kidney and liver of Channel Catfish and hybrid catfish also decreased (P < 0.05) for cathelicidin-injected groups at 24 and 48 h after challenge infection. These results show the potential of cathelicidin to protect catfish against bacterial infections and suggest that an approach overexpressing the peptide in transgenic fish, which is the long-term goal of this research program, may provide a method of decreasing bacterial disease problems in catfish as delivering the peptides via individual injection or feeding would not be economically feasible.


Assuntos
Peixes-Gato , Doenças dos Peixes , Ictaluridae , Animais , Peptídeos Catiônicos Antimicrobianos , Edwardsiella , Feminino , Doenças dos Peixes/prevenção & controle , Flavobacterium , Masculino , Catelicidinas
5.
Transgenic Res ; 30(2): 185-200, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33792795

RESUMO

Channel catfish (Ictalurus punctatus) is the primary culture species in the US along with its hybrid made with male blue catfish, I. furcatus. In an effort to improve the nutritional value of channel catfish, the masou salmon Δ5-desaturase like gene (D5D) driven by the common carp beta-actin promoter (ßactin) was inserted into channel catfish. The objectives of this study were to determine the effectiveness of ßactin-D5D for improving n-3 fatty acid production in F1 transgenic channel catfish, as well as examine pleiotropic effects on growth, proximate analysis, disease resistance, and other performance traits. Transgenic F1 channel catfish showed a 33% increase in the relative proportion of n-3 fatty acids coupled with a 15% decrease in n-6 fatty acids and a 17% decrease in n-9 fatty acids when compared to non-transgenic full-siblings (P < 0.01, P < 0.01, P < 0.01). However, while the relative proportion of n-3 fatty acids was achieved, the total amount of fatty acids in the transgenic fish decreased resulting in a reduction of all fatty acids. Insertion of the ßactin-D5D transgene into channel catfish also had large effects on the body composition, and growth of channel catfish. Transgenic channel catfish grew faster, were more disease resistant, had higher protein and moisture percentage, but lower fat percentage than full-sib controls. There were sex effects as performance changes were more dramatic and significant in males. The ßactin-D5D transgenic channel catfish were also more uniform in their fatty acid composition, growth and other traits.


Assuntos
Animais Geneticamente Modificados/crescimento & desenvolvimento , Dessaturase de Ácido Graxo Delta-5/metabolismo , Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Flavobacterium/fisiologia , Ictaluridae/crescimento & desenvolvimento , Transgenes , Animais , Animais Geneticamente Modificados/imunologia , Animais Geneticamente Modificados/metabolismo , Animais Geneticamente Modificados/microbiologia , Dessaturase de Ácido Graxo Delta-5/genética , Proteínas de Peixes/genética , Ictaluridae/imunologia , Ictaluridae/metabolismo , Ictaluridae/microbiologia
6.
Mar Biotechnol (NY) ; 23(1): 90-105, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33113010

RESUMO

The bighead catfish (Clarias macrocephalus) and channel catfish (Ictalurus punctatus) are freshwater species in the Siluriformes order. C. macrocephalus has both gills and modified gill structures serving as an air-breathing organ (ABO), while I. punctatus does not possess such an organ, and cannot breathe in air, providing an excellent model for studying the molecular basis of ABO development in teleost fish. To investigate the critical time window for the development of air-breathing function, seven development stages were selected based on hypoxia challenge results, and RNA-seq was performed upon C. macrocephalus to compare with the non-air-breathing I. punctatus. Five-hundred million reads were generated and 25,239 expressed genes were annotated in C. macrocephalus. Among those, 8675 genes were differentially expressed across developmental stages. Comparative genomic analysis identified 1458 C. macrocephalus specific genes, which were absent in I. punctatus. Gene network and protein-protein interaction analyses identified 26 key hub genes involved in the air-breathing function. Three top candidate genes, mb, ngb, hbae, are mainly associated with oxygen carrying, oxygen binding, and heme binding activities. Our study provides a rich data set for exploring the genomic basis of air-breathing function in C. macrocephalus and offers insights into the adaption to hypoxic environments.


Assuntos
Adaptação Fisiológica/genética , Peixes-Gato/genética , Respiração/genética , Animais , Peixes-Gato/crescimento & desenvolvimento , Peixes-Gato/metabolismo , Perfilação da Expressão Gênica , Genômica , Brânquias/fisiologia , Hipóxia , Oxigênio/metabolismo , Análise de Sequência de RNA
7.
Sci Rep ; 10(1): 22271, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33335280

RESUMO

CRISPR/Cas9-based gene knockout in animal cells, particularly in teleosts, has proven to be very efficient with regards to mutation rates, but the precise insertion of exogenous DNA or gene knock-in via the homology-directed repair (HDR) pathway has seldom been achieved outside of the model organisms. Here, we succeeded in integrating with high efficiency an exogenous alligator cathelicidin gene into a targeted non-coding region of channel catfish (Ictalurus punctatus) chromosome 1 using two different donor templates (synthesized linear dsDNA and cloned plasmid DNA constructs). We also tested two different promoters for driving the gene, zebrafish ubiquitin promoter and common carp ß-actin promoter, harboring a 250-bp homologous region flanking both sides of the genomic target locus. Integration rates were found higher in dead fry than in live fingerlings, indicating either off-target effects or pleiotropic effects. Furthermore, low levels of mosaicism were detected in the tissues of P1 individuals harboring the transgene, and high transgene expression was observed in the blood of some P1 fish. This can be an indication of the localization of cathelicidin in neutrophils and macrophage granules as also observed in most antimicrobial peptides. This study marks the first use of CRISPR/Cas9 HDR for gene integration in channel catfish and may contribute to the generation of a more efficient system for precise gene integration in catfish and other aquaculture species, and the development of gene-edited, disease-resistant fish.


Assuntos
Jacarés e Crocodilos/genética , Peptídeos Catiônicos Antimicrobianos/genética , Sistemas CRISPR-Cas/genética , Peixes-Gato/genética , Animais , Peixes-Gato/crescimento & desenvolvimento , Edição de Genes , Técnicas de Introdução de Genes , Marcação de Genes/métodos , Genoma/genética , RNA Guia de Cinetoplastídeos/genética , Reparo de DNA por Recombinação/genética , Catelicidinas
8.
J Fish Dis ; 43(12): 1553-1562, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32929767

RESUMO

Cathelicidins are a class of antimicrobial peptides (AMPs) known to possess rapid and direct antimicrobial activities against a variety of microorganisms. Recently identified cathelicidins derived from alligator and sea snake were found to be more effective in inhibiting microbial growth than other AMPs previously characterized. The ability of these two cathelicidins along with the peptides, cecropin and pleurocidin, to protect channel catfish (Ictalurus punctatus, Rafinesque) and hybrid catfish (I. punctatus ♀ × blue catfish, Ictalurus furcatus, Valenciennes ♂) against Edwardsiella ictaluri, one of the most prevalent pathogens affecting commercial catfish industry, was investigated. Cathelicidin-injected fish (50 µg ml-1  fish-1 ) that were simultaneously challenged with E. ictaluri through bath immersion at a concentration of ~1 × 106 CFU/ml had increased survival rates compared with other peptide treatments and the infected control. Bacterial numbers were also reduced in the liver and kidney of channel catfish and hybrid catfish in the cathelicidin treatments 24 hr post-infection. After 8 days of challenge, serum was collected to determine immune-related parameters such as bactericidal activity, lysozyme, serum protein, albumin and globulin. These immune-related parameters were significantly elevated in fish injected with the two cathelicidins as compared to other peptide treatments. These results indicate that cathelicidins derived from alligator and sea snake can stimulate immunity and enhance the resistance to E. ictaluri infection in channel catfish and hybrid catfish.


Assuntos
Catelicidinas/farmacologia , Edwardsiella ictaluri/efeitos dos fármacos , Infecções por Enterobacteriaceae/imunologia , Doenças dos Peixes/microbiologia , Animais , Anti-Infecciosos/farmacologia , Cecropinas/farmacologia , Feminino , Doenças dos Peixes/imunologia , Proteínas de Peixes/farmacologia , Ictaluridae , Masculino
9.
Front Genet ; 11: 608325, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33552125

RESUMO

Tra catfish (Pangasianodon hypophthalmus), also known as striped catfish, is a facultative air-breather that uses its swim bladder as an air-breathing organ (ABO). A related species in the same order (Siluriformes), channel catfish (Ictalurus punctatus), does not possess an ABO and thus cannot breathe in the air. Tra and channel catfish serve as great comparative models for investigating possible genetic underpinnings of aquatic to land transitions, as well as for understanding genes that are crucial for the development of the swim bladder and the function of air-breathing in tra catfish. In this study, hypoxia challenge and microtomy experiments collectively revealed critical time points for the development of the air-breathing function and swim bladder in tra catfish. Seven developmental stages in tra catfish were selected for RNA-seq analysis based on their transition to a stage that could live at 0 ppm oxygen. More than 587 million sequencing clean reads were generated, and a total of 21,448 unique genes were detected. A comparative genomic analysis between channel catfish and tra catfish revealed 76 genes that were present in tra catfish, but absent from channel catfish. In order to further narrow down the list of these candidate genes, gene expression analysis was performed for these tra catfish-specific genes. Fourteen genes were inferred to be important for air-breathing. Of these, HRG, GRP, and CX3CL1 were identified to be the most likely genes related to air-breathing ability in tra catfish. This study provides a foundational data resource for functional genomic studies in air-breathing function in tra catfish and sheds light on the adaptation of aquatic organisms to the terrestrial environment.

10.
Fish Shellfish Immunol ; 29(6): 979-86, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20800685

RESUMO

The mitochondrial adaptor, IFN-ß promoter stimulator-1 (IPS-1), also known as MAVS/VISA/Cardif, plays a key role in the signal transduction of the RIG-1/MDA5 pathway to induce the production of interferons (IFNs) and other cytokines. In the present study, Japanese flounder (Paralichthys olivaceus) IPS-1 cDNA was cloned from Japanese flounder spleen using PCR-based methods. The full-length cDNA has 2235 nucleotides and encodes a polypeptide of 641 amino acids. The putative Japanese flounder IPS-1 protein contains an N-terminal CARD-like domain, a central proline-rich domain, a C-terminal transmembrane domain, and exhibits similarity to other teleost counterparts ranging from 20% to 34%. Semi-quantitative RT-PCR showed that Japanese flounder IPS-1 mRNA was expressed in all tissues examined. The expression level of flounder IPS-1 gene was unchanged in viral hemorrhagic septicemia virus (VHSV)-infected kidney as measured by quantitative real-time PCR (Q-PCR). In addition, Japanese flounder IPS-1-overexpressing cells were protected against hirame rhabdovirus (HIRRV) and VHSV infection as manifested by the delayed appearance of cytopathic effect (CPE) and decreased viral titers. Expression of IFN-inducible genes including Mx, ISG15 and IRF3 were also induced in the IPS-1-overexpressing cells. These results suggest that Japanese flounder IPS-1 is involved in the antiviral immunity as a one of the adaptors in fish IFN-activation pathway.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Doenças dos Peixes/virologia , Linguado/genética , Novirhabdovirus/imunologia , Infecções por Rhabdoviridae/veterinária , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Linhagem Celular , Clonagem Molecular , Efeito Citopatogênico Viral/imunologia , Doenças dos Peixes/imunologia , Linguado/imunologia , Ativação Linfocitária/imunologia , Dados de Sequência Molecular , Filogenia , Poli I-C/imunologia , RNA/química , RNA/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/veterinária , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Alinhamento de Sequência , Transfecção/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...