Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
RSC Chem Biol ; 5(9): 853-865, 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39211470

RESUMO

The gut microbiome plays critical roles in human homeostasis, disease progression, and pharmacological efficacy through diverse metabolic pathways. Gut bacterial ß-glucuronidase (GUS) enzymes reverse host phase 2 metabolism, in turn releasing active hormones and drugs that can be reabsorbed into systemic circulation to affect homeostasis and promote toxic side effects. The FMN-binding and loop 1 gut microbial GUS proteins have been shown to drive drug and toxin reactivation. Here we report the structure-activity relationships of two selective piperazine-containing bacterial GUS inhibitors. We explore the potency and mechanism of action of novel compounds using purified GUS enzymes and co-crystal structures. Our results establish the importance of the piperazine nitrogen placement and nucleophilicity as well as the presence of a cyclohexyl moiety appended to the aromatic core. Using these insights, we synthesized an improved microbial GUS inhibitor, UNC10206581, that potently inhibits both the FMN-binding and loop 1 GUS enzymes in the human gut microbiome, does not inhibit bovine GUS, and is non-toxic within a relevant dosing range. Kinetic analyses demonstrate that UNC10206581 undergoes a slow-binding and substrate-dependent mechanism of inhibition similar to that of the parent scaffolds. Finally, we show that UNC10206581 displays potent activity within the physiologically relevant systems of microbial cultures and human fecal protein lysates examined by metagenomic and metaproteomic methods. Together, these results highlight the discovery of more effective bacterial GUS inhibitors for the alleviation of microbe-mediated homeostatic dysregulation and drug toxicities and potential therapeutic development.

2.
Cell Host Microbe ; 32(6): 925-944.e10, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38754417

RESUMO

Hormones and neurotransmitters are essential to homeostasis, and their disruptions are connected to diseases ranging from cancer to anxiety. The differential reactivation of endobiotic glucuronides by gut microbial ß-glucuronidase (GUS) enzymes may influence interindividual differences in the onset and treatment of disease. Using multi-omic, in vitro, and in vivo approaches, we show that germ-free mice have reduced levels of active endobiotics and that distinct gut microbial Loop 1 and FMN GUS enzymes drive hormone and neurotransmitter reactivation. We demonstrate that a range of FDA-approved drugs prevent this reactivation by intercepting the catalytic cycle of the enzymes in a conserved fashion. Finally, we find that inhibiting GUS in conventional mice reduces free serotonin and increases its inactive glucuronide in the serum and intestines. Our results illuminate the indispensability of gut microbial enzymes in sustaining endobiotic homeostasis and indicate that therapeutic disruptions of this metabolism promote interindividual response variabilities.


Assuntos
Microbioma Gastrointestinal , Glucuronidase , Homeostase , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Glucuronidase/metabolismo , Camundongos Endogâmicos C57BL , Serotonina/metabolismo , Glucuronídeos/metabolismo , Humanos , Intestinos/microbiologia , Masculino , Vida Livre de Germes
3.
ACS Nanosci Au ; 4(2): 136-145, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38644967

RESUMO

The SARS-CoV-2 pandemic spurred numerous research endeavors to comprehend the virus and mitigate its global severity. Understanding the binding interface between the virus and human receptors is pivotal to these efforts and paramount to curbing infection and transmission. Here we employ atomic force microscopy and steered molecular dynamics simulation to explore SARS-CoV-2 receptor binding domain (RBD) variants and angiotensin-converting enzyme 2 (ACE2), examining the impact of mutations at key residues upon binding affinity. Our results show that the Omicron and Delta variants possess strengthened binding affinity in comparison to the Mu variant. Further, using sera from individuals either vaccinated or with acquired immunity following Delta strain infection, we assess the impact of immunity upon variant RBD/ACE2 complex formation. Single-molecule force spectroscopy analysis suggests that vaccination before infection may provide stronger protection across variants. These results underscore the need to monitor antigenic changes in order to continue developing innovative and effective SARS-CoV-2 abrogation strategies.

4.
Cell Chem Biol ; 30(11): 1402-1413.e7, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37633277

RESUMO

Indoxyl sulfate is a microbially derived uremic toxin that accumulates in late-stage chronic kidney disease and contributes to both renal and cardiovascular toxicity. Indoxyl sulfate is generated by the metabolism of indole, a compound created solely by gut microbial tryptophanases. Here, we characterize the landscape of tryptophanase enzymes in the human gut microbiome and find remarkable structural and functional similarities across diverse taxa. We leverage this homology through a medicinal chemistry campaign to create a potent pan-inhibitor, (3S) ALG-05, and validate its action as a transition-state analog. (3S) ALG-05 successfully reduces indole production in microbial culture and displays minimal toxicity against microbial and mammalian cells. Mice treated with (3S) ALG-05 show reduced cecal indole and serum indoxyl sulfate levels with minimal changes in other tryptophan-metabolizing pathways. These studies present a non-bactericidal pan-inhibitor of gut microbial tryptophanases with potential promise for reducing indoxyl sulfate in chronic kidney disease.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Indicã/farmacologia , Indicã/metabolismo , Triptofanase , Microbioma Gastrointestinal/fisiologia , Indóis/farmacologia , Indóis/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Mamíferos/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(21): e2220741120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186838

RESUMO

Mammalian orthoreoviruses (reoviruses) serve as potential triggers of celiac disease and have oncolytic properties, making these viruses potential cancer therapeutics. Primary attachment of reovirus to host cells is mainly mediated by the trimeric viral protein, σ1, which engages cell-surface glycans, followed by high-affinity binding to junctional adhesion molecule-A (JAM-A). This multistep process is thought to be accompanied by major conformational changes in σ1, but direct evidence is lacking. By combining biophysical, molecular, and simulation approaches, we define how viral capsid protein mechanics influence virus-binding capacity and infectivity. Single-virus force spectroscopy experiments corroborated by in silico simulations show that GM2 increases the affinity of σ1 for JAM-A by providing a more stable contact interface. We demonstrate that conformational changes in σ1 that lead to an extended rigid conformation also significantly increase avidity for JAM-A. Although its associated lower flexibility impairs multivalent cell attachment, our findings suggest that diminished σ1 flexibility enhances infectivity, indicating that fine-tuning of σ1 conformational changes is required to successfully initiate infection. Understanding properties underlying the nanomechanics of viral attachment proteins offers perspectives in the development of antiviral drugs and improved oncolytic vectors.


Assuntos
Orthoreovirus , Reoviridae , Animais , Proteínas do Capsídeo/química , Reoviridae/metabolismo , Orthoreovirus/metabolismo , Proteínas Virais/metabolismo , Ligação Viral , Anticorpos Antivirais , Mamíferos/metabolismo
6.
Sci Adv ; 9(18): eadg3390, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37146137

RESUMO

Periodontitis is a chronic inflammatory disease associated with persistent oral microbial dysbiosis. The human ß-glucuronidase (GUS) degrades constituents of the periodontium and is used as a biomarker for periodontitis severity. However, the human microbiome also encodes GUS enzymes, and the role of these factors in periodontal disease is poorly understood. Here, we define the 53 unique GUSs in the human oral microbiome and examine diverse GUS orthologs from periodontitis-associated pathogens. Oral bacterial GUS enzymes are more efficient polysaccharide degraders and processers of biomarker substrates than the human enzyme, particularly at pHs associated with disease progression. Using a microbial GUS-selective inhibitor, we show that GUS activity is reduced in clinical samples obtained from individuals with untreated periodontitis and that the degree of inhibition correlates with disease severity. Together, these results establish oral GUS activity as a biomarker that captures both host and microbial contributions to periodontitis, facilitating more efficient clinical monitoring and treatment paradigms for this common inflammatory disease.


Assuntos
Microbioma Gastrointestinal , Microbiota , Doenças Periodontais , Periodontite , Humanos , Glucuronidase/metabolismo , Microbioma Gastrointestinal/fisiologia , Doenças Periodontais/etiologia , Periodontite/microbiologia , Inibidores Enzimáticos/farmacologia
7.
Nat Commun ; 14(1): 2615, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147336

RESUMO

Mammalian orthoreovirus (reovirus) infects most mammals and is associated with celiac disease in humans. In mice, reovirus infects the intestine and disseminates systemically to cause serotype-specific patterns of disease in the brain. To identify receptors conferring reovirus serotype-dependent neuropathogenesis, we conducted a genome-wide CRISPRa screen and identified paired immunoglobulin-like receptor B (PirB) as a receptor candidate. Ectopic expression of PirB allowed reovirus binding and infection. PirB extracelluar D3D4 region is required for reovirus attachment and infectivity. Reovirus binds to PirB with nM affinity as determined by single molecule force spectroscopy. Efficient reovirus endocytosis requires PirB signaling motifs. In inoculated mice, PirB is required for maximal replication in the brain and full neuropathogenicity of neurotropic serotype 3 (T3) reovirus. In primary cortical neurons, PirB expression contributes to T3 reovirus infectivity. Thus, PirB is an entry receptor for reovirus and contributes to T3 reovirus replication and pathogenesis in the murine brain.


Assuntos
Orthoreovirus de Mamíferos , Receptores Imunológicos , Receptores Virais , Infecções por Reoviridae , Animais , Humanos , Camundongos , Anticorpos Antivirais , Orthoreovirus de Mamíferos/fisiologia , Receptores Imunológicos/metabolismo , Infecções por Reoviridae/metabolismo , Receptores Virais/metabolismo
8.
Gut Microbes ; 15(1): 2203963, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122075

RESUMO

Prodrugs reliant on microbial activation are widely used but exhibit a range of efficacies that remain poorly understood. The anti-inflammatory compound 5-aminosalicylic acid (5-ASA), which is packaged in a variety of azo-linked prodrugs provided to most Ulcerative Colitis (UC) patients, shows confounding inter-individual variabilities in response. Such prodrugs must be activated by azo-bond reduction to form 5-ASA, a process that has been attributed to both enzymatic and non-enzymatic catalysis. Gut microbial azoreductases (AzoRs) are the first catalysts shown to activate azo-linked drugs and to metabolize toxic azo-chemicals. Here, we chart the scope of the structural and functional diversity of AzoRs in health and in patients with the inflammatory bowel diseases (IBDs) UC and Crohn's Disease (CD). Using structural metagenomics, we define the landscape of gut microbial AzoRs in 413 healthy donor and 1059 IBD patient fecal samples. Firmicutes encode a significantly higher number of unique AzoRs compared to other phyla. However, structural and biochemical analyses of distinct AzoRs from the human microbiome reveal significant differences between prevalent orthologs in the processing of toxic azo-dyes, and their generally poor activation of IBD prodrugs. Furthermore, while individuals with IBD show higher abundances of AzoR-encoding gut microbial taxa than healthy controls, the overall abundance of AzoR-encoding microbes is markedly low in both disease and health. Together, these results establish that gut microbial AzoRs are functionally diverse but sparse in both health and disease, factors that may contribute to non-optimal processing of azo-linked prodrugs and idiopathic IBD drug responses.


Assuntos
Combinação Besilato de Anlodipino e Olmesartana Medoxomila , Colite Ulcerativa , Doença de Crohn , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Pró-Fármacos , Humanos , Mesalamina/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico
9.
Nat Microbiol ; 8(4): 611-628, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36914755

RESUMO

Bile acids (BAs) mediate the crosstalk between human and microbial cells and influence diseases including Clostridioides difficile infection (CDI). While bile salt hydrolases (BSHs) shape the BA pool by deconjugating conjugated BAs, the basis for their substrate selectivity and impact on C. difficile remain elusive. Here we survey the diversity of BSHs in the gut commensals Lactobacillaceae, which are commonly used as probiotics, and other members of the human gut microbiome. We structurally pinpoint a loop that predicts BSH preferences for either glycine or taurine substrates. BSHs with varying specificities were shown to restrict C. difficile spore germination and growth in vitro and colonization in pre-clinical in vivo models of CDI. Furthermore, BSHs reshape the pool of microbial conjugated bile acids (MCBAs) in the murine gut, and these MCBAs can further restrict C. difficile virulence in vitro. The recognition of conjugated BAs by BSHs defines the resulting BA pool, including the expansive MCBAs. This work provides insights into the structural basis of BSH mechanisms that shape the BA landscape and promote colonization resistance against C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Animais , Camundongos , Humanos , Clostridioides , Ácidos e Sais Biliares , Amidoidrolases
10.
Nano Lett ; 23(4): 1496-1504, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36758952

RESUMO

Despite intense scrutiny throughout the pandemic, development of efficacious drugs against SARS-CoV-2 spread remains hindered. Understanding the underlying mechanisms of viral infection is fundamental for developing novel treatments. While angiotensin converting enzyme 2 (ACE2) is accepted as the key entry receptor of the virus, other infection mechanisms exist. Dendritic cell-specific intercellular adhesion molecule-3 grabbing non-integrin (DC-SIGN) and its counterpart DC-SIGN-related (DC-SIGNR, also known as L-SIGN) have been recognized as possessing functional roles in COVID-19 disease and binding to SARS-CoV-2 has been demonstrated previously with ensemble and qualitative techniques. Here we examine the thermodynamic and kinetic parameters of the ligand-receptor interaction between these C-type lectins and the SARS-CoV-2 S1 protein using force-distance curve-based AFM and biolayer interferometry. We evidence that the S1 receptor binding domain is likely involved in this bond formation. Further, we employed deglycosidases and examined a nonglycosylated S1 variant to confirm the significance of glycosylation in this interaction. We demonstrate that the high affinity interactions observed occur through a mechanism distinct from that of ACE2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Lectinas Tipo C/metabolismo , Ligantes , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA