Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(5): 4815-4831, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38785558

RESUMO

Osteosarcoma malignancy currently represents a major health problem; therefore, the need for new therapy approaches is of great interest. In this regard, the current study aims to evaluate the anti-neoplastic potential of a newly developed phosphinic acid derivative (2-carboxyethylphenylphosphinic acid) and, subsequently, to outline its pharmaco-toxicological profile by employing two different in vitro human cell cultures (keratinocytes-HaCaT-and osteosarcoma SAOS-2 cells), employing different techniques (MTT assay, cell morphology assessment, LDH assay, Hoechst staining and RT-PCR). Additionally, the results obtained are compared with three commercially available phosphorus-containing compounds (P1, P2, P3). The results recorded for the newly developed compound (P4) revealed good biocompatibility (cell viability of 77%) when concentrations up to 5 mM were used on HaCaT cells for 24 h. Also, the HaCaT cultures showed no significant morphological alterations or gene modulation, thus achieving a biosafety profile even superior to some of the commercial products tested herein. Moreover, in terms of anti-osteosarcoma activity, 2-carboxyethylphenylphosphinic acid expressed promising activity on SAOS-2 monolayers, the cells showing viability of only 55%, as well as apoptosis features and important gene expression modulation, especially Bid downregulation. Therefore, the newly developed compound should be considered a promising candidate for further in vitro and in vivo research related to osteosarcoma therapy.

2.
Gels ; 9(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37754387

RESUMO

The SEM-EDX method was used to investigate the structure and morphology of organic-inorganic hybrids containing zirconium, boron and phosphorus compounds, synthesized by the sol-gel method. We started by using, for the first time together, zirconyl chloride hexa-hydrate (ZrOCl2·6H2O), phenyl phosphinic acid and triethyl borate as precursors and reagents, at different molar ratios. The obtained hybrids showed a very high thermal stability and are not soluble in water or in organic solvents. As a consequence, such hybrid solid materials are suitable for applications at high temperatures. The obtained hybrids have complex 3D structures and form organic-inorganic networks containing Zr-O-Zr, Zr-O-P and Zr-O-B bridges. Such organic-inorganic networks are also expected to form supramolecular structures and to have many potential applications in different fields of great interest such as catalysis, medicine, agriculture, energy storage, fuel cells, sensors, electrochemical devices and supramolecular chemistry.

3.
Molecules ; 28(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838946

RESUMO

Carbonyl olefinations are among the most important organic syntheses that form C=C bonds, as they usually have high yields and in addition offer excellent stereoselectivity. Due to these advantages, carbonyl olefinations have important pharmaceutical and industrial applications. These reactions contain an additional step of an α-functionalized carbanion to an aldehyde or ketone to produce alkenes, but syntheses performed using metal carbene complexes are also known. The Wittig reaction is an example of carbonyl olefination, one of the best ways to synthesize alkenes. This involves the chemical reaction between an aldehyde or ketone with a so-called Wittig reagent, for instance phosphonium ylide. Triphenylphosphine-derived ylides and trialkylphosphine-derived ylides are the most common phosphorous compounds used as Wittig reagents. The Wittig reaction is commonly involved in the synthesis of novel anti-cancer and anti-viral compounds. In recent decades, the use of ultrasound on the Wittig reaction (and on different modified Wittig syntheses, such as the Wittig-Horner reaction or the aza-Wittig method) has been studied as a green synthesis. In addition to the advantage of green synthesis, the use of ultrasounds in general also improved the yield and reduced the reaction time. All of these chemical syntheses conducted under ultrasound will be described further in the present review.


Assuntos
Alcenos , Sonicação , Estrutura Molecular , Alcenos/química , Aldeídos
4.
Gels ; 8(10)2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36286168

RESUMO

In the present work, novel organic-inorganic hybrid materials containing boron, zirconium, and phosphorus were synthesized at different molar ratios, using the sol-gel method, starting from zirconyl chloride hexa-hydrate, triethyl borate, and phenyl phosphonic acid as the precursors. The sol-gel process is used for the first time in the present work in order to obtain organic-inorganic hybrids (or the so-called inorganic polymers) containing together boron, zirconium, and phosphorus. The sol-gel syntheses were performed at room temperature in ethanol. Zirconium containing compounds are already well known for their applications in medicine in restorative or prosthetic devices, including dental implants, knee and hip replacements, middle-ear ossicular chain reconstruction, and so on. Zirconium is a strong transition metal, which started to replace hafnium and titanium in the last decade in important applications. On the other hand, boron has the capability (similar to carbon) to form stable covalently bonded molecular networks. In addition to this capability, boron also offers mixed metallic and nonmetallic properties, because of its place on the periodic table, at the border between metals and nonmetals. Boron is responsible for the higher thermal stability of synthesized hybrid compounds. In the structure of those hybrid compounds, zirconium, boron, and phosphorus atoms are always connected via an oxygen atom, by P-O-Zr, Zr-O-Zr, or Zr-O-B bridges.

5.
Polymers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34883692

RESUMO

Fatty acids esters have a wide application as bioplasticizers and biolubricants in different industries, obtained mainly in classic batch reactors, through an equilibrium complex reaction, that involves high temperatures, long reaction times, vigorously stirring, and much energy consumption. To overcome these shortcomings, we synthesized a series of fatty acid esters (soybean oil fatty acids being the acid components with various hydroxyl compounds) through novel low energy consumption technologies using a bubble column reactor, a microwave field reactor and for comparison meaning, a classic batch reactor. The obtained bioesters physicochemical properties were similar to one another, a good concordance among their rheological properties was obtained, but the energetic consumption is lower when using the bubble column or the microwave reactors instead of the classical batch reactor.

6.
Carbohydr Polym ; 137: 664-668, 2016 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-26686177

RESUMO

The degradation of hyaluronan (HA) of different molecular weights (Mw 14.3, 267.2 and 1160.6 kDa, measured for fresh solutions, before degradation) was studied in aqueous solutions by SEC-MALLS determination of molecular mass, polydispersity and conformation parameters. The solutions were stored either at laboratory or refrigerator temperatures for two months. After this period the weight average molecular weight decreased by 90% for 14.3 kDa, 95% for 267.2 kDa and 71% for 1160.6 kDa hyaluronan (room temperature) or 5.6% for 14.3 kDa, 6.2% for 267.2 kDa and 7.7% for 1160.6 kDa hyaluronan (refrigerator temperature). The hyaluronan aqueous solutions studied did not contain sodium azide or other protectants against microorganisms, because the aim of our study was to assess the degradation in solutions to be used in medicine or cosmetics (without any compounds that are poisonous or toxic for the human body). The solvent used to prepare the samples was pure water. The polydispersity of all the samples remained unaltered during the entire degradation at both temperatures. This indicates a non-random mechanism of degradation.


Assuntos
Ácido Hialurônico/química , Água/química , Anti-Infecciosos/farmacologia , Metabolismo dos Carboidratos , Ácido Hialurônico/metabolismo , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , Microscopia Eletrônica de Varredura , Peso Molecular , Soluções , Temperatura
7.
J Phys Chem B ; 113(23): 7986-90, 2009 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-19441864

RESUMO

The present work deals with control of the stability of ionic surfactant (tetradecyl trimethyl ammonium bromide) foam films by the addition of oppositely charged polyelectrolytes. In the two cases of low and high polyelectrolyte concentrations, a common black film is formed. This is due to an electrostatic repulsion (in the latter case, according to the hitherto assumption) caused by a charge reversal at film surfaces at high polyelectrolyte concentration. But what happens around the nominal isoelectric point (IEP), where the net charge of the whole film is close to zero? Is a Newton black film formed or does the film break? Disjoining pressure isotherms show a strong reduction in stability close to the IEP. The comparison between surface tension and elasticity measurements and disjoining pressure isotherms leads to a surprising conclusion: The stability of foam films seems not to be dominated by the net charge of the polyelectrolyte/surfactant complexes at the surface, which was the former hypothesis, but by the overall net charge of the film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...