Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(12)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557471

RESUMO

Micro-electro-mechanical-systems (MEMS) extensively employed planar mechanisms with elastic curved beams. However, using a curved circular beam as a flexure hinge, in most cases, needs a more sophisticated kinetostatic model than the conventional planar flexures. An elastic curved beam generally allows its outer sections to experience full plane mobility with three degrees of freedom, making complex non-linear models necessary to predict their behavior. This paper describes the direct kinetostatic analysis of a planar gripper with an elastic curved beam is described and then solved by calculating the tangent stiffness matrix in closed form. Two simplified models and different contributions to derive their tangent stiffness matrices are considered. Then, the Newton-Raphson iterative method solves the non-linear direct kinetostatic problem. The technique, which appears particularly useful for real-time applications, is finally applied to a case study consisting of a four-bar linkage gripper with elastic curved beam joints that can be used in real-time grasping operations at the microscale.

2.
Micromachines (Basel) ; 13(6)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35744570

RESUMO

A dynamic model of a Conjugate-Surface Flexure Hinge (CSFH) has been proposed as a component for MEMS/NEMS Technology-based devices with lumped compliance. However, impacts between the conjugate surfaces have not been studied yet and, therefore, this paper attempts to fill this gap by proposing a detailed multibody system (MBS) model that includes not only rigid-body dynamics but also elastic forces, friction, and impacts. Two models based on the Lankarani-Nikravesh constitutive law are first recalled and a new model based on the contact of cylinders is proposed. All three models are complemented by the friction model proposed by Ambrosìo. Then, the non-smooth Moreau time-stepping scheme with Coulomb friction is described. The four models are compared in different scenarios and the results confirm that the proposed model outcomes comply with the most reliable models.

3.
Artigo em Inglês | MEDLINE | ID: mdl-16615578

RESUMO

In this paper, a novel method of numerical computation of the natural frequencies, depending on the most important running parameters for an ultrasonic motor, is described. The analyzed configuration by the Space Division of Alenia Spazio, Rome, within an Italian Space Agency (ASI) development program, is the flexural traveling wave one. The dynamic equations for the stator and the rotors of the ultrasonic motor are assumed into a differential system, whose equations are coupled by terms that represent interface generalized forces. In order to calculate natural frequencies of the motor-coupled terms of the equations are worked out with respect to the variables of the degrees of freedom. Hence, the mass, damping, and stiffness matrix for the whole system are obtained, then resonance frequencies, depending on the most important running parameters such as axial preload of the motor, are calculated. The results are compared with numerical ones, obtained by a finite element modeling (FEM) model, showing a good agreement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...