Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(2-2): 025308, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36109953

RESUMO

Using machine learning techniques, we introduce a Markov state model (MSM) for a model glass former that reveals structural heterogeneities and their slow dynamics by coarse-graining the molecular dynamics into a low-dimensional feature space. The transition timescale between states is larger than the conventional structural relaxation time τ_{α}, but can be obtained from trajectories much shorter than τ_{α}. The learned map of states assigned to the particles corresponds to local excess Voronoi volume. These results resonate with classic free volume theories of the glass transition, singling out local packing fluctuations as one of the dominant slowly relaxing features.

2.
Materials (Basel) ; 14(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202005

RESUMO

Commercial powder bed fusion additive manufacturing systems use re-coaters for the layer-by-layer distribution of powder. Despite the known limitations of re-coaters, there has been relatively little work presented on the possible benefits of alternative powder delivery systems. Here, we reveal a feeding technology that uses vibration to control flow for powder bed additive manufacturing. The capabilities of this approach are illustrated experimentally using two very different powders; a 'conventional' gas atomized Ti-6Al-4V powder designed for electron beam additive manufacturing and a water atomized Fe-4 wt.% Ni alloy used in powder metallurgy. Single layer melt trials are shown for the water atomized powder to illustrate the fidelity of the melt tracks in this material. Discrete element modelling is next used to reveal the mechanisms that underpin the observed dependence of feed rate on feeder process parameters and to investigate the potential strengths and limitations of this feeding methodology.

3.
Nat Commun ; 11(1): 724, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024840

RESUMO

Although the anisotropy of the solid-liquid interfacial free energy for most alloy systems is very small, it plays a crucial role in the growth rate, morphology and crystallographic growth direction of dendrites. Previous work posited a dendrite orientation transition via compositional additions. In this work we examine experimentally the change in dendrite growth behaviour in the Al-Sm (Samarium) system as a function of solute concentration and study its interfacial properties using molecular dynamics simulations. We observe a dendrite growth direction which changes from [Formula: see text] to [Formula: see text] as Sm content increases. The observed change in dendrite orientation is consistent with the simulation results for the variation of the interfacial free energy anisotropy and thus provides definitive confirmation of a conjecture in previous works. In addition, our results provide physical insight into the atomic structural origin of the concentration dependent anisotropy, and deepen our fundamental understanding of solid-liquid interfaces in binary alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...