Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 1356, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718603

RESUMO

Spliced leader trans-splicing (SLTS) plays a part in the maturation of pre-mRNAs in select species across multiple phyla but is particularly prevalent in Nematoda. The role of spliced leaders (SL) within the cell is unclear and an accurate assessment of SL occurrence within an organism is possible only after extensive sequencing data are available, which is not currently the case for many nematode species. SL discovery is further complicated by an absence of SL sequences from high-throughput sequencing results due to incomplete sequencing of the 5'-ends of transcripts during RNA-seq library preparation, known as 5'-bias. Existing datasets and novel methodology were used to identify both conserved SLs and unique hypervariable SLs within Heterodera glycines, the soybean cyst nematode. In H. glycines, twenty-one distinct SL sequences were found on 2,532 unique H. glycines transcripts. The SL sequences identified on the H. glycines transcripts demonstrated a high level of promiscuity, meaning that some transcripts produced as many as nine different individual SL-transcript combinations. Most uniquely, transcriptome analysis revealed that H. glycines is the first nematode to demonstrate a higher SL trans-splicing rate using a species-specific SL over well-conserved Caenorhabditis elegans SL-like sequences.


Assuntos
Caenorhabditis elegans/genética , Nematoides/genética , Splicing de RNA/genética , RNA Líder para Processamento/genética , Animais , Sequência de Bases , Dosagem de Genes , Ontologia Genética , Genoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Líder para Processamento/química , Especificidade da Espécie , Trans-Splicing/genética , Transcriptoma/genética
2.
J Exp Bot ; 60(1): 315-24, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19015219

RESUMO

Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.


Assuntos
Arabidopsis/genética , Regulação para Baixo , Proteínas de Helminto/genética , Nematoides/genética , Controle Biológico de Vetores/métodos , Doenças das Plantas/parasitologia , Interferência de RNA , Animais , Arabidopsis/parasitologia , Feminino , Expressão Gênica , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita , Masculino , Nematoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...