Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Mater ; : e1707489, 2018 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-29847701

RESUMO

When ferromagnetic films become ultrathin, key properties such as the Curie temperature and the saturation magnetization are usually depressed. This effect is thoroughly investigated in magnetic oxides such as half-metallic manganites, but much less in ferrimagnetic insulating perovskites such as rare-earth titanates RTiO3 , despite their appeal to design correlated 2D electron gases. Here, the magnetic properties of epitaxial DyTiO3 thin films are reported. While films thicker than about 50 nm show a bulk-like response, at low thickness a surprising increase of the saturation magnetization is observed. This behavior is described using a classical model of a "dead layer" but assuming that this layer is actually "living," that is, it responds to the magnetic field with a strong paramagnetic susceptibility. Through depth-dependent X-ray absorption and photoemission spectroscopy, it is shown that the "living-dead layer" corresponds to surface regions where magnetic (S = 1/2) Ti3+ ions are replaced by nonmagnetic Ti4+ ions. Hysteresis cycles at the Dy M 5 and Ti L 3 edges indicate that the surface Ti4+ ions decouple the Dy3+ ions, thus unleashing their strong paramagnetic response. Finally, it is shown how capping the DyTiO3 film can help increase the Ti3+ content near the surface and thus recover a better ferrimagnetic behavior.

3.
Adv Mater ; 30(25): e1706708, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29732633

RESUMO

The Mott transistor is a paradigm for a new class of electronic devices-often referred to by the term Mottronics-which are based on charge correlations between the electrons. Since correlation-induced insulating phases of most oxide compounds are usually very robust, new methods have to be developed to push such materials right to the boundary to the metallic phase in order to enable the metal-insulator transition to be switched by electric gating. Here, it is demonstrated that thin films of the prototypical Mott insulator LaTiO3 grown by pulsed laser deposition under oxygen atmosphere are readily tuned by excess oxygen doping across the line of the band-filling controlled Mott transition in the electronic phase diagram. The detected insulator to metal transition is characterized by a strong change in resistivity of several orders of magnitude. The use of suitable substrates and capping layers to inhibit oxygen diffusion facilitates full control of the oxygen content and renders the films stable against exposure to ambient conditions. These achievements represent a significant advancement in control and tuning of the electronic properties of LaTiO3+x thin films making it a promising channel material in future Mottronic devices.

4.
Adv Mater ; 28(34): 7443-9, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27332795

RESUMO

Insulating SrTiO3 (STO) can host 2D electron systems (2DESs) on its surfaces, caused by oxygen defects. This study shows that the STO surface exhibits phase separation once the 2DES is formed and relates this inhomogeneity to recently reported magnetic order at STO surfaces and interfaces. The results open pathways to exploit oxygen defects for engineering the electronic and magnetic properties of oxides.

5.
Adv Mater ; 26(3): 461-5, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24167041

RESUMO

Charge and polarization modulations in Fe3 O4 are controlled by taking advantage of interfacial strain effects. The feasibility of oxidation state control by strain modification is demonstrated and it is shown that this approach offers a stable configuration at room temperature. Direct evidence of how a local strain field changes the atomic coordination and introduces atomic displacements leading to polarization of Fe ions is presented.

6.
Phys Rev Lett ; 110(21): 216403, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23745900

RESUMO

Potassium-doped picene (K(x)picene) has recently been reported to be a superconductor at x=3 with critical temperatures up to 18 K. Here we study the electronic structure of K-doped picene films by photoelectron spectroscopy and ab initio density functional theory combined with dynamical mean-field theory (DFT+DMFT). Experimentally we observe that, except for spurious spectral weight due to the lack of a homogeneous chemical potential at low K concentrations (x≈1), the spectra always display a finite energy gap. This result is supported by our DFT+DMFT calculations which provide clear evidence that K(x)picene is a Mott insulator for integer doping concentrations x=1, 2, and 3. We discuss various scenarios to understand the discrepancies with previous reports of superconductivity and metallic behavior.

7.
Rev Sci Instrum ; 83(10): 103905, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126780

RESUMO

We present a new experimental setup to study electron-electron coincidences from superconducting surfaces. In our approach, electrons emitted from a surface are projected onto a time- and position-sensitive microchannel plate detector with delayline position readout. Electrons that are emitted within 2 π solid angle with respect to the surface are detected in coincidence. The detector used is a hexagonal delayline detector with enhanced multiple hit capabilities. It is read out with a Flash analog-to-digital converter. The three-dimensional momentum vector is obtained for each electron. The intrinsic dead time of the detector has been greatly reduced by implementing a new algorithm for pulse analysis. The sample holder has been matched to fit the spectrometer while being capable of cooling down the sample to 4.5 K during the measurement and heating it up to 420 K for the cleaning procedure.


Assuntos
Elétrons , Análise Espectral/instrumentação , Condutividade Elétrica , Imagem Óptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...