Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JAMA ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990528

RESUMO

This Viewpoint highlights the potential for unintentional or deliberate release of variola virus (smallpox), discusses current medical countermeasures for smallpox, and calls for greater flexibility from the US and its partners in developing safe, reliable, affordable, and equitable countermeasures.

2.
BMC Public Health ; 20(1): 1896, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298019

RESUMO

BACKGROUND: Design thinking allows challenging problems to be redefined in order to identify alternative user-center strategies and solutions. To address the many challenges associated with collecting and reporting data during the 2014 Ebola outbreak in Guinea, Liberia and Sierra Leone, we used a design thinking approach to build the Global Ebola Laboratory Data collection and reporting system. MAIN TEXT: We used the five-stage Design Thinking model proposed by Hasso-Plattner Institute of Design at Stanford in Guinea, Liberia and Sierra Leone. This approach offers a flexible model which focuses on empathizing, defining, ideating, prototyping, and testing. A strong focus of the methodology includes end-users' feedback from the beginning to the end of the process. This is an iterative methodology that continues to adapt according to the needs of the system. The stages do not need to be sequential and can be run in parallel, out of order, and repeated as necessary. Design thinking was used to develop a data collection and reporting system, which contains all laboratory data from the three countries during one of the most complicated multi-country outbreaks to date. The data collection and reporting system was used to orient the response interventions at the district, national, and international levels within the three countries including generating situation reports, monitoring the epidemiological and operational situations, providing forecasts of the epidemic, and supporting Ebola-related research and the Ebola National Survivors programs within each country. CONCLUSIONS: Our study demonstrates the numerous benefits that arise when using a design thinking methodology during an outbreak to solve acute challenges within the national health information system and the authors recommend it's use during future complex outbreaks.


Assuntos
Epidemias , Doença pelo Vírus Ebola , Coleta de Dados , Surtos de Doenças/prevenção & controle , Guiné , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Libéria , Serra Leoa/epidemiologia
3.
BMJ Glob Health ; 5(10)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33033054

RESUMO

Process mapping is a systems thinking approach used to understand, analyse and optimise processes within complex systems. We aim to demonstrate how this methodology can be applied during disease outbreaks to strengthen response and health systems. Process mapping exercises were conducted during three unique emerging disease outbreak contexts with different: mode of transmission, size, and health system infrastructure. System functioning improved considerably in each country. In Sierra Leone, laboratory testing was accelerated from 6 days to within 24 hours. In the Democratic Republic of Congo, time to suspected case notification reduced from 7 to 3 days. In Nigeria, key data reached the national level in 48 hours instead of 5 days. Our research shows that despite the chaos and complexities associated with emerging pathogen outbreaks, the implementation of a process mapping exercise can address immediate response priorities while simultaneously strengthening components of a health system.


Assuntos
Surtos de Doenças , Emergências , Surtos de Doenças/prevenção & controle , Humanos , Nigéria , Análise de Sistemas
4.
Pan Afr Med J ; 33(Suppl 2): 8, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31404295

RESUMO

INTRODUCTION: Following a declaration by the World Health Organization that Liberia had successfully interrupted Ebola virus transmission on May 9th, 2015; the country entered a period of enhanced surveillance. The number of cases had significantly reduced prior to the declaration, leading to closure of eight out of eleven Ebola testing laboratories. Enhanced surveillance led to an abrupt increase in demand for laboratory services. We report interventions, achievements, lessons learned and recommendations drawn from enhancing laboratory capacity. METHODS: Using archived data, we reported before and after interventions that aimed at increasing laboratory capacity. Laboratory capacity was defined by number of laboratories with Ebola Virus Disease (EVD) testing capacity, number of competent staff, number of specimens tested, specimen backlog, daily and surge testing capacity, and turnaround time. Using Stata 14 (Stata Corporation, College Station, TX, USA), medians and trends were reported for all continuous variables. RESULTS: Between May and December 2015, interventions including recruitment and training of eight staff, establishment of one EVD laboratory facility, implementation of ten Ebola GeneXpert diagnostic platforms, and establishment of working shifts yielded an 8-fold increase in number of specimens tested, a reduction in specimens backlog to zero, and restoration of turn-around time to 24 hours. This enabled a more efficient surveillance system that facilitated timely detection and containment of two EVD clusters observed thereafter. CONCLUSION: Effective enhancement of laboratory services during high demand periods requires a combination of context-specific interventions. Building and ensuring sustainability of local capacity is an integral part of effective surveillance and disease outbreak response efforts.


Assuntos
Fortalecimento Institucional , Surtos de Doenças/prevenção & controle , Doença pelo Vírus Ebola/epidemiologia , Laboratórios/organização & administração , Técnicas de Laboratório Clínico , Doença pelo Vírus Ebola/diagnóstico , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Libéria/epidemiologia
5.
J Infect Dis ; 215(12): 1799-1806, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28520958

RESUMO

Background: The international impact, rapid widespread transmission, and reporting delays during the 2014 Ebola outbreak in West Africa highlighted the need for a global, centralized database to inform outbreak response. The World Health Organization and Emerging and Dangerous Pathogens Laboratory Network addressed this need by supporting the development of a global laboratory database. Methods: Specimens were collected in the affected countries from patients and dead bodies meeting the case definitions for Ebola virus disease. Test results were entered in nationally standardized spreadsheets and consolidated onto a central server. Results: From March 2014 through August 2016, 256343 specimens tested for Ebola virus disease were captured in the database. Thirty-one specimen types were collected, and a variety of diagnostic tests were performed. Regular analysis of data described the functionality of laboratory and response systems, positivity rates, and the geographic distribution of specimens. Conclusion: With data standardization and end user buy-in, the collection and analysis of large amounts of data with multiple stakeholders and collaborators across various user-access levels was made possible and contributed to outbreak response needs. The usefulness and value of a multifunctional global laboratory database is far reaching, with uses including virtual biobanking, disease forecasting, and adaption to other disease outbreaks.


Assuntos
Bancos de Espécimes Biológicos/normas , Bases de Dados Factuais/normas , Surtos de Doenças/estatística & dados numéricos , Ebolavirus/fisiologia , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/virologia , África Ocidental/epidemiologia , Saúde Global , Humanos , Laboratórios , Organização Mundial da Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...