Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(5): 164, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38592563

RESUMO

Lead (Pb) poses a significant risk to infants and children through exposure to contaminated soil and dust. However, there is a lack of information on Pb speciation and distribution at the neighborhood-scale. This work aimed to determine: (1) the distribution of acid-extractable (labile) Pb and other metals ([M]AE) in two neighborhoods in Akron, Ohio (USA) (Summit Lake and West Akron; n = 82 samples); and (2) Pb speciation and potential sources. Total metal concentration ([M]T) and [M]AE was strongly correlated for Pb and Zn (R2 of 0.66 and 0.55, respectively), corresponding to 35% and 33% acid-extractability. Lead and Zn exhibited a strong positive correlation with each other (R2 = 0.56 for MT and 0.68 for MAE). Three types of Pb-bearing phases were observed by electron microscopy: (1) galena (PbS)-like (5-10 µm); (2) paint chip residuals (10-20 µm); and (3) Pb-bearing Fe-oxides (20 µm). Isotope ratio values for PbAE were 1.159 to 1.245 for 206Pb/207Pb, and 1.999 to 2.098 for 208Pb/206Pb, and there was a statistically significant difference between the two neighborhoods (p = 0.010 for 206Pb/207Pb and p = 0.009 for 208Pb/206Pb). Paint and petrol are the dominant sources of Pb, with some from coal and fly ash. Lead speciation and distribution is variable and reflects a complex relationship between the input of primary sources and post-deposition transformations. This work highlights the importance of community science collaborations to expand the reach of soil sampling and establish areas most at risk based on neighborhood-dependent Pb speciation and distribution for targeted remediation.


Assuntos
Carvão Mineral , Solo , Criança , Lactente , Humanos , Ohio , Cinza de Carvão , Poeira
2.
Environ Sci Technol ; 47(20): 11569-76, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24041305

RESUMO

Important reactive phenomena that affect the transport and fate of many elements occur at the mineral-water interface (MWI), including sorption and redox reactions. Fundamental knowledge of these phenomena are often based on observations of ideal mineral-water systems, for example, studies of molecular scale reactions on single crystal faces or the surfaces of pure mineral powders. Much less is understood about MWI in natural environments, which typically have nanometer to micrometer scale secondary mineral coatings on the surfaces of primary mineral grains. We examined sediment grain coatings from a well-characterized field site to determine the causes of rate limitations for arsenic (As) sorption and redox processes within the coatings. Sediments were obtained from the USGS field research site on Cape Cod, MA, and exposed to synthetic contaminated groundwater solutions. Uptake of As(III) and As(V) into the coatings was studied with a combination of electron microscopy and synchrotron techniques to assess concentration gradients and reactive processes, including electron transfer reactions. Transmission electron microscopy (TEM) and X-ray microprobe (XMP) analyses indicated that As was primarily associated with micrometer- to submicrometer aggregates of Mn-bearing nanoparticulate goethite. As(III) oxidation by this phase was observed but limited by the extent of exposed surface area of the goethite grains to the exterior of the mineral coatings. Secondary mineral coatings are potentially both sinks and sources of contaminants depending on the history of a contaminated site, and may need to be included explicitly in reactive transport models.


Assuntos
Arsênio/isolamento & purificação , Sedimentos Geológicos/química , Água Subterrânea/química , Minerais/química , Adsorção , Compostos de Ferro/química , Manganês/química , Nanopartículas/química , Oxirredução , Fatores de Tempo , Raios X
3.
Environ Sci Technol ; 47(16): 9225-32, 2013 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-23875928

RESUMO

Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).


Assuntos
Sedimentos Geológicos/química , Compostos de Urânio/análise , Urânio/análise , Resinas de Troca Aniônica/química , Colorado , Água Subterrânea , Resíduos Industriais/análise , Oxirredução , Espectroscopia por Absorção de Raios X
4.
Environ Sci Technol ; 46(7): 3821-30, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22394451

RESUMO

Sorption of contaminants onto mineral surfaces is an important process that can restrict their transport in the environment. In the current study, uranium (U) uptake on magnetite (111) was measured as a function of time and solution composition (pH, [CO(3)](T), [Ca]) under continuous batch-flow conditions. We observed, in real-time and in situ, adsorption and reduction of U(VI) and subsequent growth of UO(2) nanoprecipitates using atomic force microscopy (AFM) and newly developed batch-flow U L(III)-edge grazing-incidence X-ray absorption spectroscopy near-edge structure (GI-XANES) spectroscopy. U(VI) reduction occurred with and without CO(3) present, and coincided with nucleation and growth of UO(2) particles. When Ca and CO(3) were both present no U(VI) reduction occurred and the U surface loading was lower. In situ batch-flow AFM data indicated that UO(2) particles achieved a maximum height of 4-5 nm after about 8 h of exposure, however, aggregates continued to grow laterally after 8 h reaching up to about 300 nm in diameter. The combination of techniques indicated that U uptake is divided into three-stages; (1) initial adsorption of U(VI), (2) reduction of U(VI) to UO(2) nanoprecipitates at surface-specific sites after 2-3 h of exposure, and (3) completion of U(VI) reduction after ~6-8 h. U(VI) reduction also corresponded to detectable increases in Fe released to solution and surface topography changes. Redox reactions are proposed that explicitly couple the reduction of U(VI) to enhanced release of Fe(II) from magnetite. Although counterintuitive, the proposed reaction stoichiometry was shown to be largely consistent with the experimental results. In addition to providing molecular-scale details about U sorption on magnetite, this work also presents novel advances for collecting surface sensitive molecular-scale information in real-time under batch-flow conditions.


Assuntos
Óxido Ferroso-Férrico/química , Urânio/química , Adsorção , Meio Ambiente , Ferro/química , Cinética , Microscopia de Força Atômica , Nanopartículas/química , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Síncrotrons , Compostos de Urânio/química , Espectroscopia por Absorção de Raios X
5.
Environ Sci Technol ; 46(7): 3811-20, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22364181

RESUMO

Sequestration of uranium (U) by magnetite is a potentially important sink for U in natural and contaminated environments. However, molecular-scale controls that favor U(VI) uptake including both adsorption of U(VI) and reduction to U(IV) by magnetite remain poorly understood, in particular, the role of U(VI)-CO(3)-Ca complexes in inhibiting U(VI) reduction. To investigate U uptake pathways on magnetite as a function of U(VI) aqueous speciation, we performed batch sorption experiments on (111) surfaces of natural single crystals under a range of solution conditions (pH 5 and 10; 0.1 mM U(VI); 1 mM NaNO(3); and with or without 0.5 mM CO(3) and 0.1 mM Ca) and characterized surface-associated U using grazing incidence extended X-ray absorption fine structure spectroscopy (GI-EXAFS), grazing incidence X-ray diffraction (GI-XRD), and scanning electron microscopy (SEM). In the absence of both carbonate ([CO(3)](T), denoted here as CO(3)) and calcium (Ca), or in the presence of CO(3) only, coexisting adsorption of U(VI) surface species and reduction to U(IV) occurs at both pH 5 and 10. In the presence of both Ca and CO(3), only U(VI) adsorption (VI) occurs. When U reduction occurs, nanoparticulate UO(2) forms only within and adjacent to surface microtopographic features such as crystal boundaries and cracks. This result suggests that U reduction is limited to defect-rich surface regions. Further, at both pH 5 and 10 in the presence of both CO(3) and Ca, U(VI)-CO(3)-Ca ternary surface species develop and U reduction is inhibited. These findings extend the range of conditions under which U(VI)-CO(3)-Ca complexes inhibit U reduction.


Assuntos
Precipitação Química , Óxido Ferroso-Férrico/química , Nanopartículas/química , Urânio/isolamento & purificação , Adsorção , Cálcio/química , Concentração de Íons de Hidrogênio , Análise dos Mínimos Quadrados , Modelos Químicos , Movimento (Física) , Nanopartículas/ultraestrutura , Oxirredução , Espectrometria por Raios X , Propriedades de Superfície , Espectroscopia por Absorção de Raios X
6.
Environ Sci Technol ; 43(3): 630-6, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19244994

RESUMO

The distribution and speciation of U and Cu in contaminated vadose zone and aquifer sediments from the U.S. DOE Hanford site (300 Area) were determined using a combination of synchrotron-based micro-X-ray fluorescence (microXRF) imaging, micro-X-ray absorption near edge structure (microXANES) spectroscopy, and micro-X-ray diffraction (microXRD) techniques combined with bulk U LIII-edge X-ray absorption fine structure (XAFS) spectroscopy. Samples were collected from within the inactive North Process Pond (NPP2) at 8 ft (2.4 m, NPP2-8) depth and 12 ft (3.7 m, NPP2-12) depth in the vadose zone, and fines were isolated from turbid groundwater just below the water Table (12-14 ft, approximately 4 m, NPP2-GW). microXRF imaging, microXRD, and microXANES spectroscopy revealed two major U occurrences within the vadose and groundwater zones: (1) low to moderate concentrations of U(VI) associated with fine-textured grain coatings that were consistently found to contain clinochlore (referred to here as chlorite) observed in all three samples, and (2) U(VI)-Cu(II) hotspots consisting of micrometer-sized particles associated with surface coatings on grains of muscovite and chlorite observed in samples NPP2-8' and NPP2-GW. In the aquifer fines (NPP2-GW), these particles were identified as cuprosklodowskite (cps: Cu[(UO2)(SiO2OH)]2 x 6H2O) and metatorbernite (mtb: Cu(UO2)2(PO4)2 x 8H2O). In contrast, the U-Cu-containing particles in the vadose zone were X-ray amorphous. Analyses of U LIII-edge XAFS spectra by linear-combination fitting indicated that U speciation consisted of (1) approximately 75% uranyl sorbed to chlorite and approximately 25% mtb-like X-ray amorphous U-Cu-phosphates (8 ft depth), (2) nearly 100% sorbed uranyl (12 ft depth), and (3) approximately 70% uranyl sorbed to chlorite and approximately 30% cps/mtb (groundwater zone). These findings suggest that dissolution of U(VI)-Cu(II)-bearing solids as well as desorption of U(VI), mainly from phyllosilicates, are important persistent sources of U(VI) to the associated uranium groundwater plume in Hanford Area 300.


Assuntos
Sedimentos Geológicos/química , Poluentes Radioativos/análise , Análise Espectral/métodos , Urânio/análise , Poluentes Radioativos/classificação , Urânio/classificação , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...