Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Water Res X ; 21: 100202, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38098880

RESUMO

Combined sewer overflows (CSOs) are an important pathway of organic micropollutants from urban areas to open water bodies. Understanding the temporal dynamics of these micropollutants during overflow events is crucial for applying appropriate sampling methods and implementing effective management strategies. Yet, little is known about the dynamics of micropollutants in CSOs, because most studies report concentrations from single grab samples or event mean concentrations (EMCs). With unique high temporal resolution measurements (3 min), we show the real dynamics of polar organic micropollutants in CSOs of one small (2,700 people: P) and one large (159,000 P) urban catchment, for two micropollutant categories: (i) 33 micropollutants in municipal wastewater and (ii) 13 micropollutants from urban surface runoff. The concentration dynamics depend on the substance source and the catchment size. Indoor substances such as pharmaceuticals show high temporal dynamics with changes of 1 to 2 orders of magnitude within 9 min in the CSO of the small catchment. In contrast, outdoor substances at the small catchment and all substances at the large catchment display considerably lower variation. We tested various time-proportional sampling strategies to assess the range of error when estimating EMCs. We recommend an interval of 3 min to capture the dynamics of indoor substances in CSOs from small catchments. The results highlight that both future monitoring campaigns and the planning and management of urban wet-weather treatment systems will benefit from high temporal sampling resolutions, not only to understand dynamics but also to minimize errors of estimated EMCs.

2.
Sci Total Environ ; 889: 164170, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201846

RESUMO

Persistent, mobile and toxic (PMT), and very persistent and very mobile (vPvM) substances pose a threat to the water cycle but are often not covered in conventional environmental monitoring programs. Within this realm of substances, one compound class of concern are pesticides and their transformation products as they are deliberately introduced into the environment. To detect very polar anionic substances, including many pesticide transformation products with log DOW values ranging between -7.4 and 2.2, an ion chromatography high-resolution mass spectrometry method was developed in this study. Since inorganic anions, such as chloride and sulfate, interfere with the analysis of organic species, their removal via precipitation with Ba/Ag/H cartridges was assessed. To improve LOQs, vacuum-assisted evaporative concentration (VEC) was evaluated. By using VEC and removing inorganic salt ions, the median LOQ improved from 100 ng/L in evian® water without sample treatment to 10 ng/L after enrichment and 30 ng/L in karst groundwater. Using this method, twelve out of 64 substances covered by the final method were found in karst groundwater in concentrations of up to 5600 ng/L, and seven exceeded 100 ng/L. To the authors' knowledge, the dimethenamid TP M31 and chlorothalonil TP SYN548008 were detected for the first time in groundwater samples. The coupling to a high-resolution mass spectrometer also allows for non-target screening and hence, this method presents a powerful tool to tackle PMT/vPvM substances.


Assuntos
Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Espectrometria de Massas , Cromatografia Líquida de Alta Pressão/métodos , Praguicidas/análise , Água Subterrânea/química , Íons
3.
Water Res ; 239: 120017, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37172372

RESUMO

Direct and indirect threats by organic micropollutants can only be reliably assessed and prevented if the exposure to these chemicals is known, which in turn requires a confident estimate of their emitted amounts into the environment. APIs (Active Pharmaceutical Ingredients) enter surface waters mostly through the sewer system and wastewater treatment plants (WWTPs). However, their effluent fluxes are highly variable and influenced by several different factors that challenge robust emission estimates. Here, we defined a dimensionless, theoretically consumption-independent 'escape factor' (kesc) for estimating the amount of APIs (expected to be) present in WWTP effluents. The factor is determined as the proportion of marketed and actually emitted amounts of APIs. A large collection of German and Swiss monitoring datasets were analyzed to calculate stochastic kesc values for 31 APIs, reflecting both the magnitude and uncertainty of consumption-normalised emissions. Escape factors provide an easy-to-use tool for the estimation of average API emissions and expected variability from numerous WWTPs given that consumption data are provided, thereby supporting simulation modeling of the fate of APIs in stream networks or exposure assessments.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/análise , Rios , Incerteza , Preparações Farmacêuticas , Monitoramento Ambiental , Eliminação de Resíduos Líquidos
4.
Water Res ; 235: 119908, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37003113

RESUMO

Identifying a chemical's potential for biotransformation in the aquatic environment is crucial to predict its fate and manage its potential hazards. Due to the complexity of natural water bodies, especially river networks, biotransformation is often studied in laboratory experiments, assuming that study outcomes can be extrapolated to compound behavior in the field. Here, we investigated to what extent outcomes of laboratory simulation studies indeed reflect biotransformation kinetics observed in riverine systems. To determine in-field biotransformation, we measured loads of 27 wastewater treatment plant effluent-borne compounds along the Rhine and its major tributaries during two seasons. Up to 21 compounds were detected at each sampling location. Measured compound loads were used in an inverse model framework of the Rhine river basin to derive k'bio,field values - a compound-specific parameter describing the compounds' average biotransformation potential during the field studies. To support model calibration, we performed phototransformation and sorption experiments with all the study compounds, identifying 5 compounds that are susceptible towards direct phototransformation and determining Koc values covering four orders of magnitude. On the laboratory side, we used a similar inverse model framework to derive k'bio,lab values from water-sediment experiments run according to a modified OECD 308-type protocol. The comparison of k'bio,lab and k'bio,field revealed that their absolute values differed, pointing towards faster transformation in the Rhine river basin. Yet, we could demonstrate that relative rankings of biotransformation potential and groups of compounds with low, moderate and high persistence agree reasonably well between laboratory and field outcomes. Overall, our results provide evidence that laboratory-based biotransformation studies using the modified OECD 308 protocol and k'bio values derived thereof bear considerable potential to reflect biotransformation of micropollutants in one of the largest European river basins.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Rios , Poluentes Químicos da Água/análise , Biotransformação , Água
5.
Water Res ; 215: 118221, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35259558

RESUMO

This study presents a nation-wide assessment of the influence of chemical and pharmaceutical manufacturing (CPM) wastewaters on synthetic organic contaminant (SOC) emissions to Swiss surface waters. Geographic Information System (GIS) based analysis of the presence of CPM in wastewater treatment plant (WWTP) catchments revealed wide distribution of this industrial sector across Switzerland, suggesting that one-third of the 718 Swiss WWTPs may be influenced by CPM wastewaters. To reflect the diversity of this type of wastewaters, we investigated the effluents of 11 WWTPs of diverse sizes and technologies, which treated 0-100% wastewater from a variety of CPM activities. In an extensive sampling campaign, we collected temporally high resolved (i.e., daily) samples for 2-3 months to capture the dynamics of CPM discharges. The > 850 samples were then measured with liquid chromatography high-resolution mass spectrometry (LC-HRMS). Non-target characterization of the LC-HRMS time series datasets revealed that CPM wastewaters left a highly variable and site-specific signature in the effluents of the WWTPs. Particularly, compared to WWTPs with purely domestic input, a larger variety of substances (up to 15 times more compounds) with higher maximum concentrations (1-2 orders of magnitude) and more uncommon substances were found in CPM-influenced effluents. Moreover, in the latter, highly fluctuating discharges often contributed to a substantial fraction of the overall emissions. The largely varying characteristics of CPM discharges between different facilities were primarily related to the type of activities at the industries (i.e., production versus processing of chemicals) as well as to the pre-treatment and storage of CPM wastewaters. Eventually, for one WWTP, LC-HRMS time series were correlated with ecotoxicity time series obtained from bioassays and major toxic components could be identified. Overall, in view of their potential relevance to water quality, a strong focus on SOC discharges from CPM is essential, including the design of situation-specific monitoring, as well as risk assessment and mitigation strategies that consider the variability of industrial emissions.


Assuntos
Eliminação de Resíduos Líquidos , Poluentes Químicos da Água , Monitoramento Ambiental , Preparações Farmacêuticas , Suíça , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
6.
Water Res ; 196: 116994, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33773453

RESUMO

Groundwater is a major drinking water resource but its quality with regard to organic micropollutants (MPs) is insufficiently assessed. Therefore, we aimed to investigate Swiss groundwater more comprehensively using liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). First, samples from 60 sites were classified as having high or low urban or agricultural influence based on 498 target compounds associated with either urban or agricultural sources. Second, all LC-HRMS signals were related to their potential origin (urban, urban and agricultural, agricultural, or not classifiable) based on their occurrence and intensity in the classified samples. A considerable fraction of estimated concentrations associated with urban and/or agricultural sources could not be explained by the 139 detected targets. The most intense nontarget signals were automatically annotated with structure proposals using MetFrag and SIRIUS4/CSI:FingerID with a list of >988,000 compounds. Additionally, suspect screening was performed for 1162 compounds with predicted high groundwater mobility from primarily urban sources. Finally, 12 nontargets and 11 suspects were identified unequivocally (Level 1), while 17 further compounds were tentatively identified (Level 2a/3). amongst these were 13 pollutants thus far not reported in groundwater, such as: the industrial chemicals 2,5-dichlorobenzenesulfonic acid (19 detections, up to 100 ng L-1), phenylphosponic acid (10 detections, up to 50 ng L-1), triisopropanolamine borate (2 detections, up to 40 ng L-1), O-des[2-aminoethyl]-O-carboxymethyl dehydroamlodipine, a transformation product (TP) of the blood pressure regulator amlodipine (17 detections), and the TP SYN542490 of the herbicide metolachlor (Level 3, 33 detections, estimated concentrations up to 100-500 ng L-1). One monitoring site was far more contaminated than other sites based on estimated total concentrations of potential MPs, which was supported by the elucidation of site-specific nontarget signals such as the carcinogen chlorendic acid, and various naphthalenedisulfonic acids. Many compounds remained unknown, but overall, source related prioritisation proved an effective approach to support identification of compounds in groundwater.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Agricultura , Cromatografia Líquida , Monitoramento Ambiental , Espectrometria de Massas , Poluentes Químicos da Água/análise
7.
Environ Sci Technol ; 55(2): 1036-1044, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33372520

RESUMO

Pyrrolizidine alkaloids (PAs) are found to be toxic pollutants emitted into the environment by numerous plant species, resulting in contamination. In this article, we investigate the occurrence of PAs in the aquatic environment of small Swiss streams combining two different approaches. Pyrrolizidine alkaloids (PAs) are toxic secondary metabolites produced by numerous plant species. Although they were classified as persistent and mobile and found to be emitted into the environment, their occurrence in surface waters is largely unknown. Therefore, we performed a retrospective data analysis of two extensive HRMS campaigns each covering five small streams in Switzerland over the growing season. All sites were contaminated with up to 12 individual PAs and temporal detection frequencies between 36 and 87%. Individual PAs were in the low ng/L range, but rain-induced maximal total PA concentrations reached almost 100 ng/L in late spring and summer. Through PA patterns in water and plants, several species were tentatively identified as the source of contamination, with Senecio spp. and Echium vulgare being the most important. Additionally, two streams were monitored, and PAs were quantified with a newly developed, faster, and more sensitive LC-MS/MS method to distinguish different plant-based and indirect human PA sources. A distinctly different PA fingerprint in aqueous plant extracts pointed to invasive Senecio inaequidens as the main source of the surface water contamination at these sites. Results indicate that PA loads may increase if invasive species are sufficiently abundant.


Assuntos
Alcaloides de Pirrolizidina , Cromatografia Líquida , Humanos , Estudos Retrospectivos , Suíça , Espectrometria de Massas em Tandem
8.
Water Res ; 188: 116528, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33126003

RESUMO

Pesticide contamination of agricultural streams has widely been analysed in regions of high intensity agriculture such as in Western Europe or North America. The situation of streams subject to low intensity agriculture relying on human and animal labour, as in parts of Romania, remains unknown. To close this gap, we determined concentrations of 244 pesticides and metabolites at 19 low-order streams, covering sites from low to high intensity agriculture in a region of Romania. Pesticides were sampled with two passive sampling methods (styrene-divinylbenzene (SDB) disks and polydimethylsiloxane (PDMS) sheets) during three rainfall events and at base flow. Using the toxic unit approach, we assessed the toxicity towards algae and invertebrates. Up to 50 pesticides were detected simultaneously, resulting in sum concentrations between 0.02 and 37 µg L-1. Both, the sum concentration as well as the toxicities were in a similar range as in high intensity agricultural streams of Western Europe. Different proxies of agricultural intensity did not relate to in-stream pesticide toxicity, contradicting the assumption of previous studies. The toxicity towards invertebrates was positively related to large scale variables such as the catchment size and the agricultural land use in the upstream catchment and small scale variables including riparian plant height, whereas the toxicity to algae showed no relationship to any of the variables. Our results suggest that streams in low intensity agriculture, despite a minor reported use of agrochemicals, exhibit similar levels of pesticide pollution as in regions of high intensity agriculture.


Assuntos
Praguicidas , Poluentes Químicos da Água , Agricultura , Animais , Monitoramento Ambiental , Europa (Continente) , Invertebrados , Praguicidas/análise , Poluentes Químicos da Água/análise
9.
Environ Sci Technol ; 54(23): 15046-15056, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185094

RESUMO

In this work, emissions of active pharmaceutical ingredients (APIs) from formulating pharmaceutical industries (FPIs) were investigated for the first time based on detailed production information and compared to overall API emissions in wastewater treatment plant (WWTP) effluents. At two municipal WWTPs, both receiving wastewater from several FPIs, two months' daily effluent samples were collected and measured using liquid chromatography high-resolution mass spectrometry (LC-HRMS). Thirty-three APIs formulated during the sampling period as well as >120 organic contaminants commonly present in WWTP effluents were quantified. On the basis of their time patterns and manufacturing data, industrial contributions were found for 22 of 26 APIs (85%) detected in the samples and processed by the FPIs. API emissions from FPIs led to daily concentration increases of up to 300-fold, despite pretreatment of the industrial wastewater. However, emissions from FPIs seemed to depend on the type of formulating activity, with granulation and mixing being most prone to API losses. Losses from FPIs were responsible for the highest concentrations and for up to 60% of the daily total API emissions measured. Furthermore, screening for suspects in LC-HRMS data resulted in the detection of unexpected emissions from FPIs, demonstrating the value of these data to comprehensively assess industrial API losses. Overall, this study showed that FPIs were relevant contributors of APIs emitted in the WWTP effluents, although only a minor fraction (<1%) of the total processed API quantity was lost to the wastewater, and despite the small percentage (<5%) of FPI wastewater compared to the total wastewater flow.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Purificação da Água , Cromatografia Líquida , Indústria Farmacêutica , Monitoramento Ambiental , Eliminação de Resíduos Líquidos , Águas Residuárias/análise , Poluentes Químicos da Água/análise
10.
Glob Chang Biol ; 26(11): 6363-6382, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32881210

RESUMO

Multiple anthropogenic drivers are changing ecosystems globally, with a disproportionate and intensifying impact on freshwater habitats. A major impact of urbanization are inputs from wastewater treatment plants (WWTPs). Initially designed to reduce eutrophication and improve water quality, WWTPs increasingly release a multitude of micropollutants (MPs; i.e., synthetic chemicals) and microbes (including antibiotic-resistant bacteria) to receiving environments. This pollution may have pervasive impacts on biodiversity and ecosystem services. Viewed through multiple lenses of macroecological and ecotoxicological theory, we combined field, flume, and laboratory experiments to determine the effects of wastewater (WW) on microbial communities and organic-matter processing using a standardized decomposition assay. First, we conducted a mensurative experiment sampling 60 locations above and below WWTP discharges in 20 Swiss streams. Microbial respiration and decomposition rates were positively influenced by WW inputs via warming and nutrient enrichment, but with a notable exception: WW decreased the activation energy of decomposition, indicating a "slowing" of this fundamental ecosystem process in response to temperature. Second, next-generation sequencing indicated that microbial community structure below WWTPs was altered, with significant compositional turnover, reduced richness, and evidence of negative MP influences. Third, a series of flume experiments confirmed that although diluted WW generally has positive influences on microbial-mediated processes, the negative effects of MPs are "masked" by nutrient enrichment. Finally, transplant experiments suggested that WW-borne microbes enhance decomposition rates. Taken together, our results affirm the multiple stressor paradigm by showing that different aspects of WW (warming, nutrients, microbes, and MPs) jointly influence ecosystem functioning in complex ways. Increased respiration rates below WWTPs potentially generate ecosystem "disservices" via greater carbon evasion from streams and rivers. However, toxic MP effects may fundamentally alter ecological scaling relationships, indicating the need for a rapprochement between ecotoxicological and macroecological perspectives.


Assuntos
Microbiota , Rios , Bactérias , Ecossistema , Águas Residuárias , Qualidade da Água
12.
Environ Sci Technol ; 54(7): 4110-4120, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32208629

RESUMO

This study presents a nontarget approach to detect discharges from pharmaceutical production in municipal wastewater treatment plant (WWTP) effluents and to estimate their relevance on the total emissions. Daily composite samples were collected for 3 months at two WWTPs in Switzerland, measured using liquid chromatography high-resolution mass spectrometry, and time series were generated for all features detected. The extent of intensity variation in the time series was used to differentiate relatively constant domestic inputs from highly fluctuating industrial emissions. We show that an intensity variation threshold of 10 correctly classifies compounds of known origin and reveals clear differences between the two WWTPs. At the WWTP receiving wastewater from a pharmaceutical manufacturing site, (i) 10 times as many potential industrial emissions were detected as compared to the WWTP receiving purely domestic wastewater; (ii) for 11 pharmaceuticals peak concentrations, >10 µg/L and up to 214 µg/L were quantified, which are clearly above typical municipal wastewater concentrations; and (iii) a pharmaceutical not authorized in Switzerland was identified. Signatures of potential industrial emissions were even traceable at the downstream Rhine monitoring station at a >4000-fold dilution. Several of them occurred repeatedly, suggesting that they were linked to regular production, not to accidents. Our results demonstrate that small wastewater volumes from a single industry not only left a clear signature in the effluents of the respective WWTP but also influenced the water quality of one of Europe's most important river systems. Overall, these findings indicate that pharmaceutical production is a relevant emission source even in highly developed countries with a strong focus on water quality, such as Switzerland.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Monitoramento Ambiental , Europa (Continente) , Espectrometria de Massas , Suíça , Eliminação de Resíduos Líquidos , Águas Residuárias
13.
J Hazard Mater ; 387: 121712, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31784138

RESUMO

This study presents the development and validation of a comprehensive quantitative target methodology for the analysis of 2316 emerging pollutants in water based on Ultra-Performance Liquid Chromatography Quadrupole-Time-Of-Flight Mass Spectrometry (UPLC-Q-ToF-HRMS/MS). Target compounds include pesticides, pharmaceuticals, drugs of abuse, industrial chemicals, doping compounds, surfactants and transformation products, among others. The method was validated for 195 analytes, chosen to be representative of the chemical space of the target list, enabling the assessment of the performance of the method. The method involves a generic sample preparation based on mixed mode solid phase extraction, a UPLC-QTOF-MS/MS screening method using Data Independent Acquisition (DIA) mode, which provides MS and MS/MS spectra simultaneously and an elaborate strong post-acquisition evaluation of the data. The processing method was optimized to provide a successful identification rate >95 % and to minimize the number of false positive results (< 5 %). Decision limit (CCα) and detection capability (CCß) were also introduced in the validation scheme to provide more realistic metrics on the performance of a HRMS-based wide-scope screening method. A new system of identification points (IPs) based on the one described in the Commission Decision 2002/657/EC was applied to communicate the confidence level in the identification of the analytes. This system considers retention time, mass accuracy, isotopic fit and fragmentation; taking full advantage of the capacities of the HRMS instruments. Finally, 398 contaminants were detected and quantified in real wastewater.

14.
PLoS One ; 14(12): e0226278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31881027

RESUMO

Wastewater treatment plant effluents are important point sources of micropollutants. To assess how the discharge of treated wastewater affects the ecotoxicity of small to medium-sized streams we collected water samples up- and downstream of 24 wastewater treatment plants across the Swiss Plateau and the Jura regions of Switzerland. We investigated estrogenicity, inhibition of algal photosynthetic activity (photosystem II, PSII) and growth, and acetylcholinesterase (AChE) inhibition. At four sites, we measured feeding activity of amphipods (Gammarus fossarum) in situ as well as water flea (Ceriodaphnia dubia) reproduction in water samples. Ecotoxicological endpoints were compared with results from analyses of general water quality parameters as well as a target screening of a wide range of organic micropollutants with a focus on pesticides and pharmaceuticals using liquid chromatography high-resolution tandem mass spectrometry. Measured ecotoxicological effects in stream water varied substantially among sites: 17ß-estradiol equivalent concentrations (EEQbio, indicating the degree of estrogenicity) were relatively low and ranged from 0.04 to 0.85 ng/L, never exceeding a proposed effect-based trigger (EBT) value of 0.88 ng/L. Diuron equivalent (DEQbio) concentrations (indicating the degree of photosystem II inhibition in algae) ranged from 2.4 to 1576 ng/L and exceeded the EBT value (70 ng/L) in one third of the rivers studied, sometimes even upstream of the WWTP. Parathion equivalent (PtEQbio) concentrations (indicating the degree of AChE inhibition) reached relatively high values (37 to 1278 ng/L) mostly exceeding the corresponding EBT (196 ng/L PtEQbio). Decreased feeding activity by amphipods or decreased water flea reproduction downstream compared to the upstream site was observed at one of four investigated sites only. Results of the combined algae assay (PSII inhibition) correlated best with results of chemical analysis for PSII inhibiting herbicides. Estrogenicity was partly and AChE inhibition strongly underestimated based on measured steroidal estrogens respectively organophosphate and carbamate insecticides. An impact of dissolved organic carbon on results of the AChE inhibition assay was obvious. For this assay more work is required to further explore the missing correlation of bioassay data with chemical analytical data. Overall, the discharge of WWTP effluent led to increased estrogenicity, PSII and AChE inhibition downstream, irrespective of upstream land use.


Assuntos
Anfípodes/fisiologia , Cladocera/fisiologia , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Águas Residuárias/análise , Águas Residuárias/toxicidade , Acetilcolinesterase/metabolismo , Proteínas de Algas/efeitos dos fármacos , Anfípodes/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Cromatografia Líquida , Cladocera/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Reprodução/efeitos dos fármacos , Rios/química , Suíça , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Purificação da Água
15.
Water Res ; 165: 114972, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31450217

RESUMO

Groundwater is a major drinking water resource, but its quality is threatened by a broad variety of anthropogenic micropollutants (MPs), originating from agriculture, industry, or households, and undergoing various transformation processes during subsurface passage. To determine a worst-case impact of pesticide application in agriculture on groundwater quality, a target and suspect screening for more than 300 pesticides and more than 1100 pesticide transformation products (TPs) was performed in 31 Swiss groundwater samples which predominantly originated from areas with intensive agriculture. To assess additional urban contamination sources, more than 250 common urban MPs were quantified. Most of the screened pesticide TPs were experimentally observed by the pesticide producers within the European pesticide registration. To cover very polar pesticide TPs, vacuum-assisted evaporative concentration was used for enrichment, followed by liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS). Based on intensity, isotope pattern, retention time, and in silico fragmentation, the suspect hits were prioritised and verified. We identified 22 suspects unequivocally and five tentatively; 13 TPs are reported here for the first time to be detected in groundwater. In 13 out of 31 groundwater samples, the total concentration of the 20 identified and quantified suspects (1 pesticide and 19 pesticide TPs) exceeded the total concentration of the 519 targets (236 pesticides and TPs; 283 urban MPs) for which we screened. Pesticide TPs had higher concentrations than the parent pesticides, illustrating their importance for groundwater quality. The newly identified very polar chlorothalonil TP R471811 was the only compound detected in all samples with concentrations ranging from 3 to 2700 ng/L. Agricultural MP concentration and detection frequency correlated with agricultural land use in the catchment, except for aquifers, where protective top layers reduced MP transport from the surface. In contrast to agricultural MPs, urban MPs displayed almost no correlation with land use. The dominating entry pathway of urban MPs was river bank filtration.


Assuntos
Água Subterrânea , Praguicidas , Poluentes Químicos da Água , Agricultura , Monitoramento Ambiental
16.
Water Res ; 160: 350-360, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31158617

RESUMO

Contaminants in sewer overflows can contribute to exceedances of environmental quality standards, thus the quantification of contaminants during rainfall events is of relevance. However, monitoring is challenged by i) high spatiotemporal variability of contaminants in events of hard-to-predict durations, and ii) a large number of remote sites, which would imply enormous efforts with traditional sampling equipment. Therefore, we evaluate the applicability of passive samplers (Empore styrene-divinylbenzene reverse phase sulfonated (SDB-RPS)) to monitor a set of 13 polar organic contaminants. We present calibration experiments at high temporal resolution to assess the rate limiting accumulation mechanisms for short events (<36 h), report parameters for typical sewer conditions and compare passive samplers with composite water samples in a field study (three locations, total 10 events). With sampling rates of 0.35-3.5 L/d for 1 h reference time, our calibration results indicate a high sensitivity of passive samplers to sample short, highly variable sewer overflows. The contaminant uptake kinetic shows a fast initial accumulation, which is not well represented with the typical first-order model. Our results indicate that mass transfer to passive samplers is either controlled by the water boundary layer and the sorbent, or by the sorbent alone. Overall, passive sampler concentration estimates are within a factor 0.4 to 3.1 in comparison to composite water samples in the field study. We conclude that passive samplers are a promising approach to monitor a large number of discharge sites although it cannot replace traditional stormwater quality sampling in some cases (e.g. exact load estimates, high temporal resolution). Passive samplers facilitate identifying and prioritizing locations that may require more detailed investigations.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Poluição Ambiental , Cinética , Água
17.
Anal Bioanal Chem ; 411(14): 3151-3164, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31011779

RESUMO

Insecticides such as pyrethroids and organophosphates are extensively used globally. Once released into surface water bodies, they can pose a major threat to aquatic ecosystems already at trace concentrations. Therefore, selected pyrethroids and organophosphates are listed as priority substances within the European Water Framework Directive with chronic quality criteria in the picogram per liter range. Previously applied analytical methods were unable to detect pyrethroids and organophosphates at ecotoxicological relevant concentrations, thereby hindering the assessment of surface water quality. In this work, we developed an ultra-sensitive method for the analysis of 12 pyrethroid and two organophosphate insecticides in surface waters. This method is based on the liquid-liquid extraction of surface water samples with n-hexane to achieve large enrichment factors (4000×) and subsequent chemical analysis by gas chromatography coupled to tandem mass spectrometry using atmospheric pressure chemical ionization, a soft ionization technique. Quality control parameters including the method limits of quantification (12.5-125 pg L-1), intra-day precision (1-22%), intra-day accuracy (84-133%), and absolute recoveries covering liquid-liquid extraction (67-114%) showed that the method is sensitive and robust and therefore suitable for the analysis of pyrethroids and organophosphates in surface waters. The developed method was applied to Swiss surface water samples and detected pyrethroids and organophosphates below the ecotoxicological relevant concentrations, exemplifying the suitability of the proposed method for aquatic monitoring. Graphical abstract.

18.
Anal Bioanal Chem ; 411(12): 2555-2567, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30854597

RESUMO

Vacuum-assisted evaporative concentration (VEC) was successfully applied and validated for the enrichment of 590 organic substances from river water and wastewater. Different volumes of water samples (6 mL wastewater influent, 15 mL wastewater effluent, and 60 mL river water) were evaporated to 0.3 mL and finally adjusted to 0.4 mL. 0.1 mL of the concentrate were injected into a polar reversed-phase C18 liquid chromatography column coupled with electrospray ionization to high-resolution tandem mass spectrometry. Analyte recoveries were determined for VEC and compared against a mixed-bed multilayer solid-phase extraction (SPE). Both approaches performed equally well (≥ 70% recovery) for a vast number of analytes (n = 327), whereas certain substances were especially amenable to enrichment by either SPE (e.g., 4-chlorobenzophenone, logDow,pH7 4) or VEC (e.g., TRIS, logDow,pH7 - 4.6). Overall, VEC was more suitable for the enrichment of polar analytes, albeit considerable signal suppression (up to 74% in river water) was observed for the VEC-enriched sample matrix. Nevertheless, VEC allowed for accurate and precise quantification down to the sub-nanogram per liter level and required no more than 60 mL of the sample, as demonstrated by its application to several environmental water matrices. By contrast, SPE is typically constrained by high sample volumes ranging from 100 mL (wastewater influent) to 1000 mL (river water). The developed VEC workflow not only requires low labor cost and minimum supervision but is also a rapid, convenient, and environmentally safe alternative to SPE and highly suitable for target and non-target analysis.

19.
ISME J ; 13(2): 346-360, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30250051

RESUMO

Wastewater treatment plants (WWTPs) are implicated as hotspots for the dissemination of antibacterial resistance into the environment. However, the in situ processes governing removal, persistence, and evolution of resistance genes during wastewater treatment remain poorly understood. Here, we used quantitative metagenomic and metatranscriptomic approaches to achieve a broad-spectrum view of the flow and expression of genes related to antibacterial resistance to over 20 classes of antibiotics, 65 biocides, and 22 metals. All compartments of 12 WWTPs share persistent resistance genes with detectable transcriptional activities that were comparatively higher in the secondary effluent, where mobility genes also show higher relative abundance and expression ratios. The richness and abundance of resistance genes vary greatly across metagenomes from different treatment compartments, and their relative and absolute abundances correlate with bacterial community composition and biomass concentration. No strong drivers of resistome composition could be identified among the chemical stressors analyzed, although the sub-inhibitory concentration (hundreds of ng/L) of macrolide antibiotics in wastewater correlates with macrolide and vancomycin resistance genes. Contig-based analysis shows considerable co-localization between resistance and mobility genes and implies a history of substantial horizontal resistance transfer involving human bacterial pathogens. Based on these findings, we propose future inclusion of mobility incidence (M%) and host pathogenicity of antibiotic resistance genes in their quantitative health risk ranking models with an ultimate goal to assess the biological significance of wastewater resistomes with regard to disease control in humans or domestic livestock.


Assuntos
Farmacorresistência Bacteriana/genética , Microbiota , Águas Residuárias/microbiologia , Antibacterianos/análise , Bactérias/efeitos dos fármacos , Bactérias/genética , Bactérias/metabolismo , Transferência Genética Horizontal , Genes Bacterianos , Metagenoma , Metagenômica , Transcriptoma , Regulação para Cima , Eliminação de Resíduos Líquidos , Águas Residuárias/química
20.
Environ Sci Pollut Res Int ; 25(31): 31040-31050, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30187404

RESUMO

The Prut River, the second longest tributary of the Danube river, was investigated for a wide range of anthropogenic organic pollutants to fill the data gap on environmental contamination in eastern European surface waters. In this study, the occurrence of a wide range of organic pollutants was measured along the transboundary Prut River, between Sculeni and Branza in 2010-2012. Using two different analytical methods, gas chromatography coupled to mass spectrometry and liquid chromatography coupled to high-resolution mass spectrometry, over 300 compounds were screened for and 88 compounds were determined in the Prut River. In general, the chemicals occurred at low levels. At the last sampling site upstream of the confluence with the Danube river at Branza, the highest average concentrations (≥ 100 ng L-1) were determined for the artificial sweetener acesulfame, the pharmaceuticals metformin, 4-acetamidoantipyrene, and 4,4,5,8-tetramethylchroman-2-ol, the antioxidants 2,4-di-tert-butylphenol, 3-tert-butyl-4-hydroxyanisol, and 3,5-di-tert-butyl-4-hydroxy-toluene, the personal care products HHCB (galaxolide), 4-phenyl-benzophenone, and octyl dimethyl-p-aminobenzoic acid, the industrial chemical diphenylsulfone, and the sterol cholesterol. Low concentrations of agricultural pesticides occurred in the catchment. At Branza, the total accumulated load of all measured compounds was calculated to be almost 19 kg day-1. In comparison to the Rhine River, the loads in the Prut, determined with same LC-HRMS method for the same set of analytes, were two orders of magnitude lower. Discharge of wastewater without proper treatment from the city of Iasi in the Jijia catchment (Romania) as well as from the city of Cahul (Moldova) revealed a distinct increase in concentrations and loads in the Prut at Frasinesti and Branza. Thus, an implementation of wastewater treatment capacities in the Prut River basin would considerably reduce the loads of micropollutants from urban point sources.


Assuntos
Rios/química , Poluentes Químicos da Água/análise , Antioxidantes/análise , Cosméticos/análise , Monitoramento Ambiental , Moldávia , Praguicidas/análise , Preparações Farmacêuticas/análise , Romênia , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...