Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 859, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286847

RESUMO

Proteins labelled site-specifically with small molecules are valuable assets for chemical biology and drug development. The unique reactivity profile of the 1,2-aminothiol moiety of N-terminal cysteines (N-Cys) of proteins renders it highly attractive for regioselective protein labelling. Herein, we report an ultrafast Z-selective reaction between isatin-derived Baylis Hillman adducts and 1,2-aminothiols to form a bis-heterocyclic scaffold, and employ it for stable protein bioconjugation under both in vitro and live-cell conditions. We refer to our protein bioconjugation technology as Baylis Hillman orchestrated protein aminothiol labelling (BHoPAL). Furthermore, we report a lipoic acid ligase-based technology for introducing the 1,2-aminothiol moiety at any desired site within proteins, rendering BHoPAL location-agnostic (not limited to N-Cys). By using this approach in tandem with BHoPAL, we generate dually labelled protein bioconjugates appended with different labels at two distinct specific sites on a single protein molecule. Taken together, the protein bioconjugation toolkit that we disclose herein will contribute towards the generation of both mono and multi-labelled protein-small molecule bioconjugates for applications as diverse as biophysical assays, cellular imaging, and the production of therapeutic protein-drug conjugates. In addition to protein bioconjugation, the bis-heterocyclic scaffold we report herein will find applications in synthetic and medicinal chemistry.


Assuntos
Isatina , Estrutura Molecular , Isatina/química , Compostos de Sulfidrila , Cisteína
2.
Curr Probl Cardiol ; 48(11): 101923, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37399858

RESUMO

Diabetes and heart disease are 2 prevalent and interconnected conditions with a significant global burden. Understanding the relationship between diabetes and heart disease is crucial for effective management and prevention strategies. This article provides an overview of the 2 conditions, highlighting their types, risk factors, and global prevalence. Recent research findings establish a strong correlation between diabetes and various aspects of cardiovascular health, including coronary artery disease, heart failure, and stroke. Mechanisms such as insulin resistance, inflammation, and oxidative stress contribute to the interplay between diabetes and heart disease. The implications for clinical practice underscore the importance of early detection, risk assessment, and comprehensive management of both conditions. Lifestyle modifications, such as diet, exercise, and weight management, are essential interventions. Pharmacological interventions, including antidiabetic drugs and cardiovascular medications, play a crucial role in treatment. Managing diabetes and heart disease simultaneously poses challenges that require interdisciplinary collaboration among endocrinologists, cardiologists, and primary care physicians. Ongoing research explores personalized medicine and targeted therapies as potential future directions. Continued research and awareness are paramount to mitigate the impact of the diabetes-heart disease connection and improve patient outcomes.


Assuntos
Fármacos Cardiovasculares , Diabetes Mellitus , Cardiopatias , Humanos , Fatores de Risco , Hipoglicemiantes/uso terapêutico
3.
J Bacteriol ; 204(4): e0001022, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35352964

RESUMO

Bacterial resistance to ß-lactam antibiotics is often mediated by ß-lactamases and lytic transglycosylases. Azospirillum baldaniorum Sp245 is a plant-growth-promoting rhizobacterium that shows high levels of resistance to ampicillin. Investigating the molecular basis of ampicillin resistance and its regulation in A. baldaniorum Sp245, we found that a gene encoding lytic transglycosylase (Ltg1) is organized divergently from a gene encoding an extracytoplasmic function (ECF) σ factor (RpoE7) in its genome. Inactivation of rpoE7 in A. baldaniorum Sp245 led to increased ability to form cell-cell aggregates and produce exopolysaccharides and biofilm, suggesting that rpoE7 might contribute to antibiotic resistance. Inactivation of ltg1 in A. baldaniorum Sp245, however, adversely affected its growth, indicating a requirement of Ltg1 for optimal growth. The expression of rpoE7, as well that of as ltg1, was positively regulated by RpoE7, and overexpression of RpoE7 conferred ampicillin sensitivity to both the rpoE7::km mutant and its parent. In addition, RpoE7 negatively regulated the expression of a gene encoding a ß-lactamase (bla1). Out of the 5 paralogs of RpoH encoded in the genome of A. baldaniorum Sp245, RpoH3 played major roles in conferring ampicillin sensitivity and in the downregulation of bla1. The expression of rpoH3 was positively regulated by RpoE7. Collectively, these observations reveal a novel regulatory cascade of RpoE7-RpoH3 σ factors that negatively regulates ampicillin resistance in A. baldaniorum Sp245 by controlling the expression of a ß-lactamase and a lytic transglycosylase. In the absence of a cognate anti-sigma factor, addressing how the activity of RpoE7 is regulated by ß-lactams will unravel new mechanisms of regulation of ß-lactam resistance in bacteria. IMPORTANCE Antimicrobial resistance is a global health problem that requires a better understanding of the mechanisms that bacteria use to resist antibiotics. Bacteria inhabiting the plant rhizosphere are a potential source of antibiotic resistance, but their mechanisms controlling antibiotic resistance are poorly understood. A. baldaniorum Sp245 is a rhizobacterium that is known for its characteristic resistance to ampicillin. Here, we show that an AmpC-type ß-lactamase and a lytic transglycosylase mediate resistance to ampicillin in A. baldaniorum Sp245. While the gene encoding lytic transglycosylase is positively regulated by an ECF σ-factor (RpoE7), a cascade of RpoE7 and RpoH3 σ factors negatively regulates the expression of ß-lactamase. This is the first evidence showing involvement of a regulatory cascade of σ factors in the regulation of ampicillin resistance in a rhizobacterium.


Assuntos
Azospirillum , Fator sigma , Ampicilina/farmacologia , Antibacterianos/farmacologia , Azospirillum/metabolismo , Glicosiltransferases/genética , Fator sigma/genética , Fator sigma/metabolismo , Resistência beta-Lactâmica/genética , beta-Lactamases/genética
4.
Genome Biol Evol ; 11(9): 2557-2562, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504476

RESUMO

Sphingobium fuliginis ATCC 27551, previously classified as Flavobacterium sp. ATCC 27551, degrades neurotoxic organophosphate insecticides and nerve agents through the activity of a membrane-associated organophosphate hydrolase. This study was designed to determine the complete genome sequence of S. fuliginis ATCC 27551 to unravel its degradative potential and adaptability to harsh environments. The 5,414,624 bp genome with a GC content of 64.4% is distributed between two chromosomes and four plasmids and encodes 5,557 proteins. Of the four plasmids, designated as pSF1, pSF2, pSF3, and pSF4, only two (pSF1 and pSF2) are self-transmissible and contained the complete genetic repertoire for a T4SS. The other two plasmids (pSF3 and pSF4) are mobilizable and both showed the presence of an oriT and relaxase-encoding sequences. The sequence of plasmid pSF3 coincided with the previously determined sequence of pPDL2 and included an opd gene encoding organophosphate hydrolase as a part of the mobile element. About 15,455 orthologous clusters were identified from among the cumulatively annotated genes of 49 Sphingobium species. Phylogenetic analysis done using the core genome consisting of 802 orthologous clusters revealed a close relationship between S. fuliginis ATCC 27551 and bacteria capable of degradation of polyaromatic hydrocarbon compounds. Genes coding for transposases, efflux pumps conferring resistance to heavy metals, and TonR-type outer membrane receptors are selectively enriched in the genome of S. fuliginis ATCC 27551 and appear to contribute to the adaptive potential of the organism to challenging and harsh environments.


Assuntos
Genoma Bacteriano , Sphingomonadaceae/genética , Anotação de Sequência Molecular , Filogenia , Plasmídeos/genética , Sequenciamento Completo do Genoma
5.
Microbiol Resour Announc ; 8(31)2019 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-31371541

RESUMO

Azospirillum brasilense is used worldwide as a plant growth-promoting inoculant for agricultural crops. To understand how the genomes of Indian strains of A. brasilense compare with their South American counterparts, we determined the whole-genome sequences of four strains of A. brasilense isolated from the rhizosphere of grasses from India.

6.
Mol Plant Microbe Interact ; 32(7): 828-840, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30688544

RESUMO

Azospirillum brasilense is a plant growth-promoting bacterium that colonizes the roots of a large number of plants, including C3 and C4 grasses. Malate has been used as a preferred source of carbon for the enrichment and isolation Azospirillum spp., but the genes involved in their transport and utilization are not yet characterized. In this study, we investigated the role of the two types of dicarboxylate transporters (DctP and DctA) of A. brasilense in their ability to colonize and promote growth of the roots of a C4 grass. We found that DctP protein was distinctly upregulated in A. brasilense grown with malate as sole carbon source. Inactivation of dctP in A. brasilense led to a drastic reduction in its ability to grow on dicarboxylates and form cell aggregates. Inactivation of dctA, however, showed a marginal reduction in growth and flocculation. The growth and nitrogen fixation of a dctP and dctA double mutant of A. brasilense were severely compromised. We have shown here that DctPQM and DctA transporters play a major and a minor role in the transport of C4-dicarboxylates in A. brasilense, respectively. Studies on inoculation of the seedlings of a C4 grass, Eleusine corcana, with A. brasilense and its dicarboxylate transport mutants revealed that dicarboxylate transporters are required by A. brasilense for an efficient colonization of plant roots and their growth.


Assuntos
Azospirillum brasilense , Transportadores de Ácidos Dicarboxílicos , Eleusine , Azospirillum brasilense/genética , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Eleusine/microbiologia , Regulação Bacteriana da Expressão Gênica , Inativação Gênica , Malatos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia
7.
Appl Microbiol Biotechnol ; 98(10): 4625-36, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24573606

RESUMO

The genome of Azospirillum brasilense harbors a gene encoding S-adenosylmethionine-dependent methyltransferase, which is located downstream of an arsenate reductase gene. Both genes are cotranscribed and translationally coupled. When they were cloned and expressed individually in an arsenate-sensitive strain of Escherichia coli, arsenate reductase conferred tolerance to arsenate; however, methyltransferase failed to do so. Sequence analysis revealed that methyltransferase was more closely related to a PrmB-type N5-glutamine methyltransferase than to the arsenate detoxifying methyltransferase ArsM. Insertional inactivation of prmB gene in A. brasilense resulted in an increased sensitivity to chloramphenicol and resistance to tiamulin and clindamycin, which are known to bind at the peptidyl transferase center (PTC) in the ribosome. These observations suggested that the inability of prmB:km mutant to methylate L3 protein might alter hydrophobicity in the antibiotic-binding pocket of the PTC, which might affect the binding of chloramphenicol, clindamycin, and tiamulin differentially. This is the first report showing the role of PrmB-type N5-glutamine methyltransferases in conferring resistance to tiamulin and clindamycin in any bacterium.


Assuntos
Antibacterianos/farmacologia , Arseniato Redutases/metabolismo , Azospirillum brasilense/efeitos dos fármacos , Azospirillum brasilense/enzimologia , Farmacorresistência Bacteriana , Metiltransferases/metabolismo , Antibacterianos/metabolismo , Arseniato Redutases/genética , Azospirillum brasilense/genética , Cloranfenicol/metabolismo , Cloranfenicol/farmacologia , Clindamicina/metabolismo , Clindamicina/farmacologia , Clonagem Molecular , Diterpenos/metabolismo , Diterpenos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Técnicas de Inativação de Genes , Metiltransferases/genética , Mutagênese Insercional , Ribossomos/metabolismo
8.
Antioxid Redox Signal ; 20(1): 42-59, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23725220

RESUMO

AIMS: Azospirillum brasilense harbors two redox-sensitive Zinc-binding anti-sigma (ZAS) factors (ChrR1 and ChrR2), which negatively regulate the activity of their cognate extra-cytoplasmic function (ECF) σ factors (RpoE1 and RpoE2) by occluding their binding to the core enzyme. Both pairs of RpoE-ChrR control responses to photooxidative stress. The aim of this study was to investigate whether the two RpoE-ChrR pairs cross-talk while responding to the stress. RESULTS: In silico analysis showed a high sequence similarity between ChrR1 and ChrR2 proteins, but differences in redox sensitivity. Using in silico and in vitro methods of protein-protein interaction, we have shown that both ChrR1 and ChrR2 proteins physically bind to their noncognate RpoE proteins. Restoration of the phenotypes of chrR1::Tn5 and chrR2::Km mutants related to carotenoid biosynthesis and photooxidative stress tolerance by expressing chrR1 or chrR2 provided in vivo evidence for the cross-talk. In addition, up- or down-regulation of several identical proteins by expressing chrR1 or chrR2 in the chrR1::Tn5 mutant provided another in vivo evidence for the cross-talk. INNOVATION: Although multiple redox-sensitive ZAS anti-σ factors occur in some Gram-positive bacteria, no cross-talk is reported among them. We report here, for the first time, that the two ZAS anti-σ factors of A. brasilense also interact with their noncognate σ factors and affect gene expression. CONCLUSION: The two redox-sensitive ZAS anti-σ factors in A. brasilense may interact with their cognate as well as noncognate ECF σ factors to play an important role in redox homeostasis by facilitating recovery from the oxidative stress.


Assuntos
Azospirillum brasilense/metabolismo , Proteínas de Bactérias/metabolismo , Estresse Oxidativo , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Zinco/metabolismo , Azospirillum brasilense/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Carotenoides/biossíntese , Transporte de Elétrons , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Mutação , Oxirredução , Fenótipo , Ligação Proteica , Conformação Proteica , Mapeamento de Interação de Proteínas , Proteoma , Proteômica , Fator sigma/química , Fator sigma/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...