Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Microb Biotechnol ; 16(12): 2212-2222, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37490280

RESUMO

The utilization of microbial inoculants in the realm of sustainable agricultural and ecosystem restoration has witnessed a surge in recent decades. This rise is largely attributed to advancements in our understanding of plant-microbe interactions, the urgency to reduce the dependence on agrochemicals and the growing societal demand for sustainable strategies in ecosystem management. However, despite the rapid growth of bio-inoculants sector, certain limitations persist concerning their efficacy and performance under the field condition. Here, we propose that seed biopriming, an effective microbial inoculant technique integrating both biological agents (the priming of beneficial microbes on seeds) and physiological aspects (hydration of seeds for improved metabolically activity), has a significant potential to mitigate these limitations. This method increases the protection of seeds against soil-borne pathogens and soil pollutants, such as salts and heavy metals, while promoting germination rate and uniformity, leading to overall improved primary productivity and soil health. Furthermore, we argue that a microbial coating on seeds can facilitate transgenerational associations of beneficial microbes, refine plant and soil microbiomes, and maintain soil legacies of beneficial microflora. This review article aims to improve our understanding of the seed biopriming approach as a potent and valuable tool in achieving sustainable agriculture and successful ecosystem restoration.


Assuntos
Inoculantes Agrícolas , Ecossistema , Agricultura , Sementes , Plantas , Solo
2.
Indian J Otolaryngol Head Neck Surg ; 74(Suppl 2): 1790-1796, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36452609

RESUMO

Verrucous carcinoma (VC) is a locally invasive uncommon histopathological variant of oral squamous cell cancer. There is paucity of literature regarding control rates in these cases. We intend to report the outcomes in terms of administered treatment and control rates. 28 patients of oral cavity verrucous carcinomas treated at our institute from March 2014 to December 2018 were reviewed retrospectively. Demographic profile, histopathological features and clinical outcomes were analyzed. Statistical analysis was performed with SPSS for Mac (version 23.0). Median age was 54 years (range 31-75) with M:F ratio of 25:3. Buccal mucosa was the most common site. All patients underwent surgical resection except one. Of these, 24 had neck dissection; 12 had supra-omohyoid neck dissection, eleven had modified neck dissection and one patient underwent radical neck dissection. Three patients had their histology upgraded to squamous cell carcinomas in the post-operative histopathology. The post-operative staging was as follows: 21% stage I and 35% stage II. One patient opted for non-surgical approach and received radical concurrent chemoradiotherapy. Median follow up was 12 months (range 6-36). Two patients had local failures and one had a regional failure. No distant metastasis was found. There was one death. 14-Months survival rate was 92%. Estimated 18 month loco-regional control rate was 92%. Curative surgical resection remains the cornerstone for VC of oral cavity. Any change of histopathology post-operatively to squamous cell carcinoma is a poor prognostic sign and needs appropriate adjuvant treatment.

3.
J Appl Microbiol ; 133(5): 2802-2813, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35880391

RESUMO

AIMS: Soil salinity is a huge obstacle in crop production worldwide. Saline soil can reduce active chemical contents in medicinal plants of the Leguminosae family through crippled normal nodule function. Intensive efforts are underway to improve yield and medicinal value of leguminous herbs under salt stress condition by using benign microbes. Here, an attempt was made to explore the salt-tolerant bacteria associated with rhizosphere of fenugreek plant (Trigonella foenum-graecum L.) and to evaluate their impact on host plant growth and metabolite of pharmaceutical importance. METHODS AND RESULTS: A salt-tolerant plant growth promoting rhizobacterial (PGPR) strain Priestia endophytica SK1 isolated from fenugreek rhizospheric soil, which increased biomass and metabolite content in plants grown under saline stress. SK1 bacterial application induced nodule formation and enhanced nitrogen and phosphorus content under salt (100 mM NaCl) stress as compared to control plants. H2 O2 production and lipid peroxidation as a measure of stress were observed high in control plants, while a reduction in these parameters was observed in plants inoculated with SK1. In addition, a significant effect was found on the phenolic compounds and trigonelline content in fenugreek plant inoculated with SK1 bacterium. An increased trigonelline content of about 54% over uninoculated control was recorded under salt stress. CONCLUSION: The results of this study revealed that the application of salt-tolerant PGPR strain P. endophytica SK1 induced nitrogen fixation machinery that leads to alleviate salt stress and improved the biosynthesis of trigonelline content in fenugreek. SIGNIFICANCE OF THE STUDY: This study extends our understanding on the significance of rhizosphere microbiome and their beneficial role in plant health under environmental stress to promote agro-eco-farming practices.


Assuntos
Trigonella , Trigonella/microbiologia , Nitrogênio , Cloreto de Sódio , Estresse Salino , Solo/química , Microbiologia do Solo , Fósforo , Raízes de Plantas/microbiologia
4.
Sci Total Environ ; 826: 154170, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35227717

RESUMO

Incessant release of nitrile group of compounds such as cyanides into agricultural land through industrial effluents and excessive use of nitrile pesticides has resulted in increased nitrile pollution. Release of nitrile compounds (NCs) as plant root exudates is also contributing to the problem. The released NCs interact with soil elements and persists for a long time. Persistent higher concentration of NCs in soil cause toxicity to beneficial microflora and affect crop productivity. The NCs can cause more problems to human health if they reach groundwater and enter the food chain. Nitrile degradation by soil bacteria can be a solution to the problem if thoroughly exploited. However, the impact of such bacteria in plant and soil environments is still not properly explored. Plant growth-promoting rhizobacteria (PGPR) with nitrilase activity has recently gained attention as potential solution to address the problem. This paper reviews the core issue of nitrile pollution in soil and the prospects of application of nitrile degrading bacteria for soil remediation, soil health improvement and plant growth promotion in nitrile-polluted soils. The possible mechanisms of PGPR that can be exploited to degrade NCs, converting them into plant useful compounds and synthesis of the phytohormone IAA from degraded NCs are also discussed at length.


Assuntos
Produção Agrícola , Nitrilas , Bactérias , Biodegradação Ambiental , Humanos , Plantas , Solo , Microbiologia do Solo
5.
Biotechnol Rep (Amst) ; 33: e00712, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35186674

RESUMO

Optimized therapeutic bio-compounds supported by bio-acceptable nanosystems (i.e., precise nanomedicine) have ability to promote health via maintaining body structure, organ function, and controlling chronic and acute effects. Therefore, nano-nutraceuticals (designed to neutralize virus, inhibit virus bindings with receptors, and support immunity) utilization can manage COVID-19 pre/post-infection effects. To explore these approaches well, our mini-review explores optimized bio-active compounds, their ability to influence SARS-CoV-2 infection, improvement in performance supported by precise nanomedicine approach, and challenges along with prospects. Such optimized pharmacologically relevant therapeutic cargo not only affect SARS-CoV-2 but will support other organs which show functional alternation due to SARS-CoV-2 for example, neurological functions. Hence, coupling the nutraceuticals with the nano-pharmacology perspective of higher efficacy via targeted delivery action can pave a novel way for health experts to plan future research needed to manage post COVID-19 infection effect where a longer efficacy with no side-effects is a key requirement.

6.
Microbiol Res ; 246: 126721, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33581445

RESUMO

Microbial volatile organic compounds (mVOCs) have great potential in plant ecophysiology, yet the role of belowground VOCs in plant stress management remains largely obscure. Analysis of biocontrol producing VOCs into the soil allow detailed insight into their interaction with soil borne pathogens for plant disease management. A root interaction trial was set up to evaluate the effects of VOCs released from Trichoderma viride BHU-V2 on soil-inhabiting fungal pathogen and okra plant growth. VOCs released into soil by T. viride BHU-V2 inhibited the growth of collar rot pathogen, Sclerotium rolfsii. Okra plants responded to VOCs by increasing the root growth (lateral roots) and total biomass content. VOCs exposure increased defense mechanism in okra plants by inducing different enzyme activities i.e. chitinase (0.89 fold), ß-1,3-glucanase (0.42 fold), peroxidase (0.29 fold), polyphenol oxidase (0.33 fold) and phenylalanine lyase (0.7 fold) when inoculated with S. rolfsii. In addition, T. viride BHU-V2 secreted VOCs reduced lipid peroxidation and cell death in okra plants under pathogen inoculated condition. GC/MS analysis of VOCs blend revealed that T. viride BHU-V2 produced more number of antifungal compounds in soil medium as compared to standard medium. Based on the above observations it is concluded that okra plant roots perceive VOCs secreted by T. viride BHU-V2 into soil that involved in induction of plant defense system against S. rolfsii. In an ecological context, the findings reveal that belowground microbial VOCs may play an important role in stress signaling mechanism to interact with plants.


Assuntos
Abelmoschus/efeitos dos fármacos , Abelmoschus/crescimento & desenvolvimento , Basidiomycota/efeitos dos fármacos , Hypocreales/química , Compostos Orgânicos Voláteis/química , Compostos Orgânicos Voláteis/farmacologia , Abelmoschus/enzimologia , Agentes de Controle Biológico/farmacologia , Morte Celular/efeitos dos fármacos , Hypocreales/isolamento & purificação , Peroxidação de Lipídeos/efeitos dos fármacos , Desenvolvimento Vegetal/efeitos dos fármacos , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Estresse Fisiológico/efeitos dos fármacos
7.
Microbiol Res ; 242: 126590, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33022544

RESUMO

Proteomic approaches are being used to elucidate a better discretion of interactions occurring between host, pathogen, and/or beneficial microorganisms at the molecular level. Application of proteomic techniques, unravel pathogenicity, stress-related, and antioxidant proteins expressed amid plant-microbe interactions and good information have been generated. It is being perceived that a fine regulation of protein expression takes place for effective pathogen recognition, induction of resistance, and maintenance of host integrity. However, our knowledge of molecular plant-microbe interactions is still incomplete and inconsequential. This review aims to provide insight into numerous ways used for proteomic investigation including peptide/protein identification, separation, and quantification during host defense response. Here, we highlight the current progress in proteomics of defense responses elicited by bacterial, fungal, and viral pathogens in plants along with which the proteome level changes induced by beneficial microorganisms are also discussed.


Assuntos
Interações entre Hospedeiro e Microrganismos/fisiologia , Plantas/microbiologia , Proteoma/metabolismo , Proteômica/métodos , Bactérias/metabolismo , Fungos/metabolismo , Doenças das Plantas/microbiologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo
9.
Microbiol Res ; 237: 126482, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32353683

RESUMO

Seed biopriming is an emerging technique to enhance seed germination under stress conditions. An integrated approach of tomato seed biopriming with ascorbic acid, Trichoderma asperellum BHU P-1 and Ochrobactrum sp. BHU PB-1 was applied to observe the response against wilt pathogen of tomato Fusarium oxysporum f. sp. lycopersici (FOL). Tomato seeds bioprimed with the aforementioned application expressed augmented seed germination and activated of defense response. Seed germination was recorded higher (80 %) at low concentration (1 pM) of ascorbic acid as compared to high concentration of 1 mM (41 %). Combination of both ascorbic acid and antagonistic microbe treatments (T5 & T6) significantly reduced disease incidence (up to 28 %) in tomato plants at 10 days. T5 and T6 treated plants exhibited higher accumulation of total phenol content and increased activity of Phenylammonia lyase (PAL), Peroxidase (PO), Chitinase (Chi) and Polyphenol oxidase (PPO) as compared to control (T1) plants. ROS formation in the form of H2O2 was also found to be reduced in combined treatment. Histochemical analysis revealed that phenylpropanoid pathway (lignin deposition) was more activated in combined priming treatment plants as compared to individual treatment upon challenge inoculation with FOL. Transcript expression analysis of defense genes confirmed the up-regulation of PAL (2.1 fold), Chi (0.92 fold), Pathogenesis related proteins (PR) (1.58 fold) and Lipoxygenase (Lox) (0.72 fold) in T6 treatment as compared to T1 treatment plants at 96 h. This study reveals that ascorbic acid treatment with antagonistic microbes through seed priming effectively induced seed germination and elicited defense mechanism to control wilt disease in tomato plants.


Assuntos
Antibiose , Resistência à Doença , Fusariose/prevenção & controle , Sementes , Solanum lycopersicum , Ácido Ascórbico/farmacologia , Agentes de Controle Biológico/farmacologia , Catecol Oxidase/análise , Quitinases/análise , Resistência à Doença/genética , Fusariose/tratamento farmacológico , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Expressão Gênica , Genes de Plantas , Peróxido de Hidrogênio/análise , Hypocreales , Lignina/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Solanum lycopersicum/microbiologia , Ochrobactrum , Fenol/análise , Compostos de Fenilamônio/análise , Doenças das Plantas/prevenção & controle , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sementes/microbiologia
10.
Front Microbiol ; 11: 443, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308647

RESUMO

Salt tolerant bacteria can be helpful in improving a plant's tolerance to salinity. Although plant-bacteria interactions in response to salt stress have been characterized, the precise molecular mechanisms by which bacterial inoculation alleviates salt stress in plants are still poorly explored. In the present study, we aimed to determine the role of a salt-tolerant plant growth-promoting rhizobacteria (PGPR) Sphingobacterium BHU-AV3 for improving salt tolerance in tomato through investigating the physiological responses of tomato roots and leaves under salinity stress. Tomato plants inoculated with BHU-AV3 and challenged with 200 mM NaCl exhibited less senescence, positively correlated with the maintenance of ion balance, lowered reactive oxygen species (ROS), and increased proline content compared to the non-inoculated plants. BHU-AV3-inoculated plant leaves were less affected by oxidative stress, as evident from a reduction in superoxide contents, cell death, and lipid peroxidation. The reduction in ROS level was associated with the increased antioxidant enzyme activities along with multiple-isoform expression [peroxidase (POD), polyphenol oxidase (PPO), and superoxide dismutase (SOD)] in plant roots. Additionally, BHU-AV3 inoculation induced the expression of proteins involved in (i) energy production [ATP synthase], (ii) carbohydrate metabolism (enolase), (iii) thiamine biosynthesis protein, (iv) translation protein (elongation factor 1 alpha), and the antioxidant defense system (catalase) in tomato roots. These findings have provided insight into the molecular mechanisms of bacteria-mediated alleviation of salt stress in plants. From the study, we can conclude that BHU-AV3 inoculation effectively induces antioxidant systems and energy metabolism in tomato roots, which leads to whole plant protection during salt stress through induced systemic tolerance.

11.
Asian Pac J Cancer Prev ; 21(3): 755-760, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32212804

RESUMO

BACKGROUND: The standard of care in high grade glioma (HGG) is maximal safe surgical resection followed by adjuvant radiotherapy (RT) with/without chemotherapy. For anaplastic gliomas, studies have shown use of procarbazine, lomustine, vincristine (PCV) improves overall survival (OS) and progression free survival (PFS). Currently, there is substantial evidence that molecular markers strongly predict prognosis and response to treatment. METHODS: Between January 2016 to January 2018, 42 patients were accrued and followed up till April 2019. The primary end points were to correlate molecular markers with response to therapy in terms of OS and PFS in HGG. The secondary end point was to evaluate frequency of 1p/19q codeletion, IDH 1 mutation, ATRX deletion and p53 in HGG patients. RESULTS: The median age was 46 years (range 18-67) with M:F ratio 30:12. The frequency of IDH1 mutation,1p/19q codeletion, p53 mutation and ATRX mutation were 42.8%, 16.6%, 42.8% and 14.2% respectively. All the seven patients with 1p/19q codeletion had IDH1 mutation. Median follow up was 22 months. The 20-months PFS for different mutations were as follows; IDH1-mutated vs wild type: 53.6% vs 29.8%; p-0.035, 1p/19q codeleted vs non-codeleted: 85.7% vs 62.3%; p-0.011, p53 wild type vs mutated 32.1% vs 35.6%; p-0.035 and ATRX lost vs retained: 55.6% vs 53.3%; p- 0.369. The 20-months OS for IDH1 mutated vs wild type: 82.4% vs 30.6%; p-0.014, 1p/19q codeleted vs non-codeleted: 85.7% vs 65.8%; p-0.104, p53 wild-type vs mutated 45.5% vs 73.9%; p-0.036 and ATRX lost vs retained: 100% vs 60.3%; p-0.087. CONCLUSION: Codeletion of 1p/19q with IDH1 mutation in HGG is associated with a significantly favourable PFS. However, larger studies with longer follow up are required to evaluate OS and PFS in all the molecular subgroups.


Assuntos
Quimiorradioterapia , Glioma/terapia , Adulto , Idoso , Biomarcadores Tumorais/metabolismo , Cromossomos Humanos Par 1 , Cromossomos Humanos Par 19 , Feminino , Glioma/metabolismo , Glioma/patologia , Humanos , Isocitrato Desidrogenase/genética , Pessoa de Meia-Idade , Mutação , Gradação de Tumores
12.
J Environ Manage ; 253: 109584, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634747

RESUMO

The environmental impacts of biosynthesized nanoparticles on the soil bacterial community assemblage and functions are not sufficiently understood. Given the broad application of silver nanoparticles (AgNPs), the present study aims to reveal the effects of biosynthesized AgNPs (~12 nm) on the soil bacterial community structure and functions. Specifically, we used a quantitative real-time PCR (qPCR) approach to quantify the relative abundance of bacterial taxon/group and representative functional genes (AOA, AOB, NirK, NirS, NosZ, and PhoD). Results showed high relative abundance of Actinobacteria (1.53 × 107, p = 0.000) followed by Alphaproteobacteria (1.18 × 106, p = 0.000) and Betaproteobacteria (2.01 × 106, p = 0.000) in the soil exposed to biosynthesized AgNPs (100 mg/kg soil) after 30 days of treatment. Bacteroidetes group was observed to be negatively affected by AgNPs treatment. In the case of functional genes abundance, more pronounced impact was observed after 30 days of application. The biosynthesized AgNPs treatment accounted for significant increase in the relative abundance of all targeted functional genes except NirS. We conclude that the biosynthesized AgNPs did not cause toxic effects on nitrifiers, denitrifiers and organic phosphorus metabolizing bacterial community. While AgNO3 caused higher toxicity in the soil bacterial community structure and function. Based on our findings, we propose two key research questions for further studies; (i) is there any adaptation strategy or silver resistance embraced by the soil microbial community? and (ii) are biosynthesized nanoparticles environmentally safe and do not pose any risk to the soil microbial community? There is a necessity to address these questions to predict the environmental safety of biosynthesized AgNPs and to apply appropriate soil management policies to avoid nanotoxicity. Since this study provides preliminary evidence for the positive response of the soil bacterial community structure and functions to biosynthesized AgNPs, additional investigations under different soil conditions with varying soil physico-chemical properties are required to authenticate their environmental impact.


Assuntos
Nanopartículas Metálicas , Solo , Bactérias , Prata , Microbiologia do Solo
13.
3 Biotech ; 9(3): 109, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30863693

RESUMO

Trichoderma spp. is considered as a plant growth promoter and biocontrol fungal agents. They colonize on the surface of root in most of the agriculture crops. They secrete different secondary metabolites and enzymes which promote different physiological processes as well as protect plants from various environmental stresses. This is part of their vital functions. They are widely exploited as a biocontrol agent and plant growth promoter in agricultural fields. Colonization of Trichoderma with roots can enhance nutrient acquisition from surrounding soil to root and can substantially increase nitrogen use efficiency (NUE) in crops and linked with activation of plant signaling cascade. Among Trichoderma species, only some Trichoderma species were well characterized which help in the uptake of nitrogen-containing compound (especially nitrate form) and induced nitric oxide (NO) in plants. Both nitrate and NO are known as a signaling agent, involved in plant growth and development and disease resistance. Activation of these signaling molecules may crosstalk with other signaling molecule (Ca2+) and phytohormone (auxin, gibberellins, cytokinin and ethylene). This ability of Trichoderma is important to agriculture not only for increased plant growth but also to control plant diseases. Recently, Trichoderma strains have been shown to encompass the ability to regulate transcripts level of high-affinity nitrate transporters and probably it was positively regulated by NO. This review aims to focus the usage of Trichoderma strains on crops by their abilities to regulate transcript levels, probably through activation of plant N signaling transduction that improve plant health.

14.
RSC Adv ; 9(68): 39793-39810, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-35541384

RESUMO

Trichoderma has been explored and found to play a vital role in the defense mechanism of plants. However, its effects on host disease management in the presence of N nutrients remains elusive. The present study aimed to assess the latent effects of Trichoderma asperellum T42 on oxidative burst-mediated defense mechanisms against Xanthomonas oryzae pv. oryzae (Xoo) in tobacco plants fed 10 mM NO3 - and 3 mM NH4 + nutrients. The nitrate-fed tobacco plants displayed an increased HR when Xoo infected, which was enhanced in the Trichoderma-treated plants. This mechanism was enhanced by the involvement of Trichoderma, which elicited NO production and enhanced the expression pattern of NO-modulating genes (NR, NOA and ARC). The real-time NO fluorescence intensity was alleviated in the NH4 +-fed tobacco plants compared to that fed NO3 - nutrient, suggesting the significant role of Trichoderma-elicited NO. The nitrite content and NR activity demonstration further confirmed that nitrate metabolism led to NO generation. The production of ROS (H2O2) in the plant leaves well-corroborated that the disease resistance was mediated through the oxidative burst mechanism. Nitrate application resulted in greater ROS production compared to NH4 + nutrient after Xoo infection at 12 h post-infection (hpi). Additionally, the mechanism of enhanced plant defense under NO3 - and NH4 + nutrients mediated by Trichoderma involved NO, ROS production and induction of PR1a MEK3 and antioxidant enzyme transcription level. Moreover, the use of sodium nitroprusside (100 µM) with Xoo suspension in the leaves matched the disease resistance mediated via NO burst. Altogether, this study provides novel insights into the fundamental mechanism behind the role of Trichoderma in the activation of plant defense against non-host pathogens under N nutrients.

15.
Microbiol Res ; 207: 100-107, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29458844

RESUMO

Phenolics play a key role in communication between plants and microbes in the rhizosphere. In this study, shikimic, gallic, fumaric, ferulic, vanillic acid and quercetin in root exudates of Abelmoschus esculentus act as chemoattractants of endophytic Alcaligenes faecalis strains, BHU 12, BHU 16 and BHU M7. In vitro chemotaxis assay showed that BHU 12 expressed highest chemotactic movement (CFU ∼50×1012) towards A.esculentus root exudates followed by BHU 16 and BHU M7 (CFU∼ 9×1012), thereby confirming their ability to colonize the host rhizoplane region. However, BHU 16 expressed highest biofilm formation ability followed by BHU 12 and BHU M7. Assessment of chemotactic and biofilm formation potential towards individual phenolic acids revealed BHU 12 to be maximally attracted towards 1µM shikimic acid (2×1015) while BHU 16 towards 1mM vanillic acid (6.5×1012) and BHU M7 towards 1mM ferulic acid (3.5×1012), thereby confirming the phenolic acid components responsible for particularly attracting the endophytic isolates. Upon colonization, the endophytic isolates modified the phenolic profiles of root exudates in planta in a manner so as to plausibly attract more of the beneficial rhizospheric microbiota as well as self-fortification against pathogenic microbes. This hypothesis was verified by monitoring the changes in phenolic components of A. esculentus root exudate owing to S. rolfsii infection, a disastrous soil-borne pathogen. Thus, on the whole, the work provides intricate details of plant-endophyte interactions for biotic stress management through careful manipulation of root exudates, thereby aiding in sustainable agriculture.


Assuntos
Abelmoschus/química , Alcaligenes faecalis/metabolismo , Ácidos Cumáricos/metabolismo , Fumaratos/metabolismo , Ácido Gálico/metabolismo , Exsudatos de Plantas/metabolismo , Quercetina/metabolismo , Ácido Chiquímico/metabolismo , Ácido Vanílico/metabolismo , Alcaligenes faecalis/classificação , Biofilmes/crescimento & desenvolvimento , Quimiotaxia/fisiologia , Raízes de Plantas/microbiologia , Rizosfera
16.
Plant Physiol Biochem ; 118: 320-332, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28683401

RESUMO

Fusarium wilt is one of the most prevalent and damaging diseases of tomato. Among various toxins secreted by the Fusarium oxysporum f. sp. lycopersici (causal agent of Fusarium wilt of tomato), fusaric acid (FA) is suspected to be a potent pathogenicity factor in tomato wilt disease development. With this rationale the present study was carried out with physiological, biochemical and proteomic perspectives. Treatment of FA was given to the leaves of tomato directly through infiltration to show the characteristic features of Fusarium wilt of tomato. The phytotoxic effect of FA was assessed in the form of cell death in tomato leaves which was observed by increased uptake of Evans blue stain. The measurement of electrolyte leakage was used as an indicator of the extent of cell death. The influence of FA on the leaf photosynthesis of tomato plant was investigated and it was found that FA strongly reduced the photosynthetic pigment contents of tomato leaves resulting to heavy suppression of leaf photosynthesis processes, which therefore affected leaf physiology finally leading to leaf wilting and necrosis. This cell death inducer (FA) produced an enormous oxidative burst during which large quantities of reactive oxygen species (ROS) like H2O2 was generated in the treated leaf tissues of tomato plants which was evident from enhancement in lipid peroxidation. To assess the involvement of proteolysis in the cell death cascade induced by FA treatment, total protease activity was measured in the leaf tissues and it was found that the total protease activity increased with the treatment and leading to cell death. Furthermore, proteomic study was used as a powerful tool to understand the alterations in cellular protein expression in response to FA exposure. Differential expression in several proteins was observed in the present study. Proteomic analyses, thus, clearly indicate that proteins belonging to different functional classes are significantly affected in the plant leaf tissues after FA exposure leading to deterioration of structure and metabolism of cells. Thus, it is concluded that FA plays an important role in fungal pathogenicity by decreasing cell viability.


Assuntos
Ácido Fusárico/toxicidade , Doenças das Plantas , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Ácido Fusárico/química , Fusarium/química , Peroxidação de Lipídeos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteômica
17.
Front Plant Sci ; 8: 471, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421100

RESUMO

Nanotechnology representing a new frontier in modern agriculture is anticipated to become a major thrust in near future by offering potential applications. This integrating approach, i.e., agri-nanotechnology has great potential to cope with global challenges of food production/security, sustainability and climate change. However, despite the potential benefits of nanotechnology in agriculture so far, their relevance has not reached up to the field conditions. The elevating concerns about fate, transport, bioavailability, nanoparticles toxicity and inappropriateness of regulatory framework limit the complete acceptance and inclination to adopt nanotechnologies in agricultural sector. Moreover, the current research trends lack realistic approach that fail to attain comprehensive knowledge of risk assessment factors and further toxicity of nanoparticles toward agroecosystem components viz. plant, soil, soil microbiomes after their release into the environment. Hence in the present review we attempt to suggest certain key points to be addressed in the current and future agri-nanotechnology researches on the basis of recognized knowledge gaps with strong recommendation of incorporating biosynthesized nanoparticles to carry out analogous functions. In this perspective, the major points are as follows: (i) Mitigating risk assessment factors (responsible for fate, transport, behavior, bioavailability and toxicity) for alleviating the subsequent toxicity of nanoparticles. (ii) Optimizing permissible level of nanoparticles dose within the safety limits by performing dose dependent studies. (iii) Adopting realistic approach by designing the experiments in natural habitat and avoiding in vitro assays for accurate interpretation. (iv) Most importantly, translating environmental friendly and non-toxic biosynthesized nanoparticles from laboratory to field conditions for agricultural benefits.

18.
Crit Rev Biotechnol ; 37(4): 525-540, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27684212

RESUMO

Despite several conventional potent antibacterial therapies, bacterial infections pose a significant threat to human health because they are emerging as the leading cause of death worldwide. Due to the development of antibiotic resistance in bacteria, there is a pressing demand to discover novel approaches for developing more effective therapies to treat multidrug-resistant bacterial strains and biofilm-associated infections. Therefore, attention has been especially devoted to a new and emerging branch of science "nanotechnology" to design non-conventional antimicrobial chemotherapies. A range of nanomaterials and nano-sized carriers for conventional antimicrobial agents have fully justified their potential to combat bacterial diseases by reducing cell viability, by attenuating quorum sensing, and by inhibiting/or eradicating biofilms. This communication summarizes emerging nano-antimicrobial therapies in treating bacterial infections, particularly using antibacterial, quorum quenching, and anti-biofilm nanomaterials as new approaches to tackle the current challenges in combating infectious diseases.


Assuntos
Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Nanotecnologia/métodos , Percepção de Quorum/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/uso terapêutico , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Humanos , Nanotecnologia/tendências
19.
Crit. Rev. Biotechnol. ; 37(4): 525-540, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15173

RESUMO

Despite several conventional potent antibacterial therapies, bacterial infections pose a significant threat to human health because they are emerging as the leading cause of death worldwide. Due to the development of antibiotic resistance in bacteria, there is a pressing demand to discover novel approaches for developing more effective therapies to treat multidrug-resistant bacterial strains and biofilm-associated infections. Therefore, attention has been especially devoted to a new and emerging branch of science "nanotechnology" to design non-conventional antimicrobial chemotherapies. A range of nanomaterials and nano-sized carriers for conventional antimicrobial agents have fully justified their potential to combat bacterial diseases by reducing cell viability, by attenuating quorum sensing, and by inhibiting/or eradicating biofilms. This communication summarizes emerging nano-antimicrobial therapies in treating bacterial infections, particularly using antibacterial, quorum quenching, and anti-biofilm nanomaterials as new approaches to tackle the current challenges in combating infectious diseases.

20.
Microbiol Res ; 193: 74-86, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27825488

RESUMO

In the present study we bioprimed seeds of six vegetable crops (tomato, brinjal, chilli, okra, ridge gourd and guar) with different spore doses of Trichoderma asperellum BHUT8 ranging from 102 to 108 spores ml-1 and the effect of biopriming was seen on seed germination and development. The most effective spore dose for enhancement in seed germination and radicle length was found to be 103 spores ml-1 in tomato and ridge gourd, 104 spores ml-1 in brinjal and okra while 106 spores ml-1 in chilli and guar. At the most effective spore dose, the increase in germination percentage was 5, 146.15, 112.5, 5.4, 28.13 and 0% while increase in radicle length was 73.17, 50.83, 171.6, 107.35, 247.19 and 90.79% in tomato, brinjal, chilli, okra, ridge gourd and guar, respectively, compared to their controls. Higher spore dose i.e. 107-108 spores ml-1 and 106-108 spores ml-1 in tomato and brinjal, respectively, reduced seed germination percentage and radicle growth compared to their controls. Biopriming with T. asperellum BHUT8 also triggered various defense like responses such as high phenylpropanoid activities and lignifications in bioprimed tomato seedlings compared to the non-bioprimed tomato seedlings demonstrating possible use of BHUT8 against phytopathogens.


Assuntos
Esporos Fúngicos/crescimento & desenvolvimento , Trichoderma/crescimento & desenvolvimento , Verduras/crescimento & desenvolvimento , Verduras/microbiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Sementes/crescimento & desenvolvimento , Sementes/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...