Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 958, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969647

RESUMO

The present work investigates biomass wastes and their ashes for re-use in combination with mineralised CO2 in cement-bound construction products. A range of biomass residues (e.g., wood-derived, nut shells, fibres, and fruit peels) sourced in India, Africa and the UK were ashed and exposed to CO2 gas. These CO2-reactive ashes could mineralise CO2 gas and be used to cement 'raw' biomass in solid carbonated monolithic composites. The CO2 sequestered in ashes (125-414 g CO2/kg) and that emitted after incineration (400-500 g CO2/kg) was within the same range (w/w). The CO2-reactive ashes embodied significant amounts of CO2 (147-424 g equivalent CO2/kg ash). Selected ashes were combined with raw biomass and Portland Cement, CEM 1 and exposed to CO2. The use of CEM 1 in the carbonated products was offset by the CO2 mineralised (i.e. samples were 'carbon negative', even when 10% w/w CEM 1 was used); furthermore, biomass ashes were a suitable substitute for CEM 1 up to 50% w/w. The approach is conceptually simple, scalable, and can be applicable to a wide range of biomass ashes in a closed 'emission-capture' process 'loop'. An extrapolation of potential for CO2 offset in Europe provides an estimate of CO2 sequestration potential to 2030.

2.
Ecol Evol ; 8(20): 10345-10359, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30398478

RESUMO

Although gymnosperms were nearly swept away by the rise of the angiosperms in the Late Cretaceous, conifers, and pines (Pinus species) in particular, survived and regained their dominance in some habitats. Diversification of pines into fire-avoiding (subgenus Haploxylon) and fire-adapted (subgenus Diploxylon) species occurred in response to abiotic and biotic factors in the Late Cretaceous such as competition with emerging angiosperms and changing fire regimes. Adaptations/traits that evolved in response to angiosperm-fuelled fire regimes and stressful environments in the Late Cretaceous were key to pine success and are also contributing to a new "pine rise" in some areas in the Anthropocene. Human-mediated activities exert both positive and negative impacts of range size and expansion and invasions of pines. Large-scale afforestation with pines, human-mediated changes to fire regimes, and other ecosystem processes are other contributing factors. We discuss traits that evolved in response to angiosperm-mediated fires and stressful environments in the Cretaceous and that continue to contribute to pine persistence and dominance and the numerous ways in which human activities favor pines.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...