Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Top Med Chem ; 24(8): 737-753, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318824

RESUMO

BACKGROUND: SARS-CoV-2, the unique coronavirus that causes COVID-19, has wreaked damage around the globe, with victims displaying a wide range of difficulties that have encouraged medical professionals to look for innovative technical solutions and therapeutic approaches. Artificial intelligence-based methods have contributed a significant part in tackling complicated issues, and some institutions have been quick to embrace and tailor these solutions in response to the COVID-19 pandemic's obstacles. Here, in this review article, we have covered a few DL techniques for COVID-19 detection and diagnosis, as well as ML techniques for COVID-19 identification, severity classification, vaccine and drug development, mortality rate prediction, contact tracing, risk assessment, and public distancing. This review illustrates the overall impact of AI/ML tools on tackling and managing the outbreak. PURPOSE: The focus of this research was to undertake a thorough evaluation of the literature on the part of Artificial Intelligence (AI) as a complete and efficient solution in the battle against the COVID-19 epidemic in the domains of detection and diagnostics of disease, mortality prediction and vaccine as well as drug development. METHODS: A comprehensive exploration of PubMed, Web of Science, and Science Direct was conducted using PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) regulations to find all possibly suitable papers conducted and made publicly available between December 1, 2019, and August 2023. COVID-19, along with AI-specific words, was used to create the query syntax. RESULTS: During the period covered by the search strategy, 961 articles were published and released online. Out of these, a total of 135 papers were chosen for additional investigation. Mortality rate prediction, early detection and diagnosis, vaccine as well as drug development, and lastly, incorporation of AI for supervising and controlling the COVID-19 pandemic were the four main topics focused entirely on AI applications used to tackle the COVID-19 crisis. Out of 135, 60 research papers focused on the detection and diagnosis of the COVID-19 pandemic. Next, 19 of the 135 studies applied a machine-learning approach for mortality rate prediction. Another 22 research publications emphasized the vaccine as well as drug development. Finally, the remaining studies were concentrated on controlling the COVID-19 pandemic by applying AI AI-based approach to it. CONCLUSION: We compiled papers from the available COVID-19 literature that used AI-based methodologies to impart insights into various COVID-19 topics in this comprehensive study. Our results suggest crucial characteristics, data types, and COVID-19 tools that can aid in medical and translational research facilitation.


Assuntos
Inteligência Artificial , COVID-19 , SARS-CoV-2 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/isolamento & purificação , Vacinas contra COVID-19 , Tratamento Farmacológico da COVID-19 , Desenvolvimento de Medicamentos , Antivirais/uso terapêutico
2.
Database (Oxford) ; 20232023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847815

RESUMO

Medicinal plants are anticipated to be one of the most valuable resources for the remedial usage in the treatment of various ailments. The data on key medicinal plants and their therapeutic efficacy against various ailments are quite scattered and not available on a single platform. Moreover, currently there is no means/mechanism of finding the best medicinal plant(s) from numerous plants known to cure any disease. DISPEL (Diseases Plants Eliminate) is a compendium of medicinal plants available across the world that are used to cure infectious as well as non-infectious diseases in humans. The association of a medicinal plant with a disease it cures is hereby referred to as 'medicinal plant-disease cured' linkage. The DISPEL database hosts ∼60 000 'medicinal plant-disease cured' linkages encompassing ∼5500 medicinal plants and ∼1000 diseases. This platform provides interactive and detailed visualization of medicinal plants, diseases and their relations using comprehensible network graph representation. The user has the freedom to search the database by specifying the name of disease(s) as well as the scientific/common name(s) of plant. Each 'medicinal plant-disease cured' relation is scored based on the availability of any medicine/product derived from that medicinal plant, information about active compound(s), knowledge regarding the part of plant that is effective and number of distinct articles/books/websites confirming the effectiveness of the medicinal plant. The user can find the best plant(s) that can be used to cure any desired disease(s). The DISPEL database is the first step towards generating the 'most-effective' combination of plants to cure a disease since it delineates as well as ranks all the therapeutic medicinal plants for that disease. The combination of best medicinal plants can then be used to conduct clinical trials and thus pave the way for their use in clinics for treatment of diseases. Database URL https://compbio.iitr.ac.in/dispel.


Assuntos
Plantas Medicinais , Humanos , Fitoterapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...