Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39029111

RESUMO

Nuclear magnetic resonance (NMR) plays a central role in the elucidation of chemical structures but is often limited by low sensitivity. Dissolution dynamic nuclear polarization (dDNP) emerges as a transformative methodology for both solution-state NMR and metabolic NMR imaging, which could overcome this limitation. Typically, dDNP relies on combining a stable radical with the analyte within a uniform glass under cryogenic conditions. The electron polarization is then transferred through microwave irradiation to the nuclei. The present study explores the use of radicals introduced via γ-irradiation, as bearers of the electron spins that will enhance 1H or 13C nuclides. 1H solid-state NMR spectra of γ-irradiated powders at 1-5 K revealed, upon microwave irradiation, signal enhancements that, in general, were higher than those achieved through conventional glass-based DNP. Transfer of these samples to a solution-state NMR spectrometer via a rapid dissolution driven by a superheated water provided significant enhancements of solution-state 1H NMR signals. Enhancements of 13C signals in the γ-irradiated solids were more modest, as a combined consequence of a low radical concentration and of the dilute concentration of 13C in the natural abundant samples examined. Nevertheless, ca. 700-800-fold enhancements in 13C solution NMR spectra of certain sites recorded at 11.7 T could still be achieved. A total disappearance of the radicals upon performing a dDNP-like aqueous dissolution and a high stability of the samples were found. Overall, the study showcases the advantages and limitations of γ-irradiated radicals as candidates for advancing spectroscopic dDNP-enhanced NMR.

2.
J Phys Chem Lett ; 15(21): 5659-5664, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38767577

RESUMO

Heteronuclear 13C-15N couplings were measured in single-scan nuclear magnetic resonance (NMR) experiments for a variety of nitrogen-containing chemical compounds with varied structural characteristics, by using a one-dimensional (1D) 13C-15N multiple-quantum (MQ)-filtered experiment. Sensitivity limitations of the MQ filtering were overcome by the combined use of 15N labeling and dissolution dynamic nuclear polarization (dDNP), performed at cryogenic conditions and followed by quick and optimized sample melting and transfer procedures. Coupling information could thus be obtained from nucleotide bases, amino acids, urea, and aliphatic and aromatic amides, including the measurement of relatively small J-couplings directly from the 1D filtered spectra. This experiment could pave the way for NMR-based analytical applications that investigate structural and stereochemical insights into nitrogen-containing compounds, including dipeptides and proteins, while relying on heteronuclear couplings and nuclear hyperpolarization.

3.
Chem Commun (Camb) ; 57(65): 8035-8038, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34291258

RESUMO

We show that TOCSY and multiple-quantum (MQ) 2D NMR spectra can be obtained for mixtures of substrates hyperpolarised by dissolution dynamic nuclear polarisation (D-DNP). This is achieved by combining optimised transfer settings for D-DNP, with ultrafast 2D NMR experiments based on spatiotemporal encoding. TOCSY and MQ experiments are particularly well suited for mixture analysis, and this approach opens the way to significant sensitivity gains for analytical applications of NMR, such as authentication and metabolomics.

4.
Magn Reson Chem ; 57(10): 852-860, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30702770

RESUMO

For optimization and control of pharmaceutically and industrially important reactions, chemical information is required in real time. Instrument size, handling, and operation costs are important criteria to be considered when choosing a suitable analytical method apart from sensitivity and resolution. This present study explores the use of a robust and compact nuclear magnetic resonance (NMR) spectrometer to monitor the stereo-selective formation of α-fluoro-α,ß-unsaturated esters from α-fluoro-ß-keto esters via deprotonation and deacylation in real time. These compounds are precursors of various pharmaceutically active substances. The real-time study revealed the deprotonation and deacylation steps of the reaction. The reaction was studied at temperatures ranging from 293 to 333 K by interleaved one-dimensional 1 H and 19 F and two-dimensional 1 H-1 H COSY experiments. The kinetic rate constants were evaluated using a pseudo first-order kinetic model. The activation energies for the deprotonation and deacylation steps were determined to 28 ± 2 and 63.5 ± 8 kJ/mol, respectively. This showed that the deprotonation step is fast compared with the deacylation step and that the deacylation step determines the rate of the overall reaction. The reaction was repeated three times at 293 K to monitor the repeatability and stability of the system. The compact NMR spectrometer provided detailed information on the mechanism and kinetics of the reaction, which is essential for optimizing the synthetic routes for stepwise syntheses of pharmaceutically active substances.


Assuntos
Ésteres/síntese química , Flúor/química , Espectroscopia de Ressonância Magnética/métodos , Cetonas/síntese química , Cinética , Espectroscopia de Ressonância Magnética/instrumentação , Estereoisomerismo , Temperatura , Termodinâmica
5.
Analyst ; 143(18): 4408-4421, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30137060

RESUMO

The kinetic isotope effect (KIE) describes the change in the rate of a chemical reaction by substituting one of the atoms in the reactants with one of its isotopes. Investigating the KIE and its temperature dependency in reactions renders information for reconstructing chemical processes and confirming the rate-determining step. However, conventional methods to study the KIE, e.g. by calorimetry, conductivity, titration, Raman spectroscopy etc., require calibration and sophisticated handling of the reaction calorimeter, and the data are obtained at irregular and sparse intervals. This current study employs a compact NMR system as an alternative means to determine the temperature dependency of the reaction rate and, thus, the KIE, as well as the activation energy, enthalpy, and entropy of each reaction. Here the neutral hydrolysis of acetic anhydride and ethyl trifluoroacetate was studied in H2O, D2O and H2O-D2O mixtures with 1H and 19F NMR spectroscopy. The activation energies for the hydrolysis of acetic anhydride with D2O and H2O were found to be 45 ± 2 kJ mol-1 and 40 ± 2 kJ mol-1, respectively. The activation energies of ethyl trifluoroacetate hydrolysis via19F NMR spectroscopy were determined to 46.7 ± 1 kJ mol-1 and 54.9 ± 1 kJ mol-1 for the reaction with H2O and D2O, respectively, and via1H NMR spectroscopy to 48 ± 3 kJ mol-1 and 55.8 ± 1 kJ mol-1. The differences in rate constants and activation energies for both reactions in H2O and D2O are due to the kinetic isotope effect, involving the breakage and formation of O-H and O-D bonds during the rate-determining step. The proton inventory studies were performed for both the reactions for determining the isotopic fractionation factors for the given transition states of the reactions which help to predict the reaction mechanisms of other similar reactions. The compact NMR system is a relevant and practical tool to unmask precise reaction pathways, by tracing the KIE in real time with densely sampled data, which are essential for obtaining accurate rate constants.

6.
Angew Chem Int Ed Engl ; 57(24): 6996-7010, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29230908

RESUMO

NMR spectroscopy is an indispensable method of analysis in chemistry, which until recently suffered from high demands for space, high costs for acquisition and maintenance, and operational complexity. This has changed with the introduction of compact NMR spectrometers suitable for small-molecule analysis on the chemical workbench. These spectrometers contain permanent magnets giving rise to proton NMR frequencies between 40 and 80 MHz. The enabling technology is to make small permanent magnets with homogeneous fields. Tabletop instruments with inhomogeneous fields have been in use for over 40 years for characterizing food and hydrogen-containing materials by relaxation and diffusion measurements. Related NMR instruments measure these parameters in the stray field outside the magnet. They are used to inspect the borehole walls of oil wells and to test objects nondestructively. The state-of-the-art of NMR spectroscopy, imaging and relaxometry with compact instruments is reviewed.

7.
Anal Bioanal Chem ; 409(30): 7223-7234, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29030668

RESUMO

Monitoring of chemical reactions in real-time is in demand for process control. Different methods such as gas chromatography (GC), mass spectroscopy, infrared spectroscopy, and nuclear magnetic resonance (NMR) are used for that purpose. The current state-of-the-art compact NMR systems provide a useful method to employ with various reaction conditions for studying chemical reactions inside the fume hood at the chemical workplace. In the present study, an acetalization reaction was investigated with compact NMR spectroscopy in real-time. Acetalization is used for multistep synthesis of the variety of organic compounds to protect particular chemical groups. A compact 1 T NMR spectrometer with a permanent magnet was employed to monitor the acid catalyzed acetalization of the p-nitrobenzaldehyde with ethylene glycol. The concentrations of both reactant and product were followed by peak integrals in single-scan 1H NMR spectra as a function of time. The reaction conditions were varied in terms of temperature, agitation speed, catalyst loading, and feed concentrations in order to determine the activation energy with the help of a pseudo-homogeneous kinetic model. For low molar ratios of aldehyde and glycol, the equilibrium conversions were lower than for the stoichiometric ratio. Increasing catalyst concentration leads to faster conversion. The data obtained with low-field NMR spectroscopy were compared with data from GC and NMR spectroscopy at 9.4 T acquired in batch mode by extracting samples at regular time intervals. The reaction kinetics followed by either method agreed well. The activation energies for forward and backward reactions were determined by real-time monitoring with compact NMR at 1 T were 48 ± 5 and 60 ± 4 kJ/mol, respectively. The activation energies obtained with gas chromatography for forward and backward reactions were 48 ± 4 and 51 ± 4 kJ/mol. The equilibrium constant decreases with increasing temperature as expected for an exothermic reaction. The impact of dense sampling with online NMR and sparse sampling with GC was observed on the kinetic outcome using the same kinetic model. Graphical abstract Acetalization reaction kinetics were monitored with real-time desktop NMR spectroscopy at 1 T. Each data point was obtained at regular intervals with a single shot in 15 s. The kinetics was compared with sparsely sampled data obtained with GC and NMR at 9.4 T.

8.
Analyst ; 142(9): 1459-1470, 2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-28345710

RESUMO

Elucidating the structure of complex molecules is difficult at low magnetic fields due to the overlap of different peak multiplets and second-order coupling effects. This is even more challenging for rigid molecules with small chemical shift differences and with prochiral centers. Since low-field NMR spectroscopy is sometimes presumed as restricted to the analysis of only small and simple molecules, this paper aims at countering this misconception: it demonstrates the use of low-field NMR spectroscopy in chemical forensics for identifying strychnine and its counterions by exploring the chemical shift as a signature in different 1D 1H and 13C experiments. Hereby the applied methodologies combine various 1D and 2D experiments such as 1D 1H, 13C, DEPT, and 2D COSY, HETCOR, HSQC, HMBC and J-resolved spectroscopy to elucidate the molecular structure and skeleton of strychnine at 1 Tesla. Strychnine is exemplified here, because it is a basic precursor in the chemistry of natural products and is employed as a chemical weapon and as a doping agent in sports including the Olympics. In our study, the molecular structure of the compound could be identified either with a 1D experiment at high magnetic field or with HMBC and HSQC experiments at 1 T. In conclusion, low-field NMR spectroscopy enables the chemical elucidation of the strychnine structure through a simple click with a computer mouse. In situations where a high-field NMR spectrometer is unavailable, compact NMR spectrometers can nevertheless generate knowledge of the structure, important for identifying the different chemical reaction mechanisms associated with the molecule. Desktop NMR is a cost-effective viable option in chemical forensics. It can prove adulteration and identify the origin of different strychnine salts, in particular, the strychnine free base, strychnine hemisulphate and strychnine hydrochloride. The chemical shift signatures report the chemical structure of the molecules due to the impact of the counterions on the chemical shift of the protons adjacent to the heteroatoms. This can serve as a methodology for the structure elucidation of complex molecules at lower-magnetic fields.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...