Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 211: 108710, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735154

RESUMO

Adenosine triphosphate-binding cassette transporters (ABC transporters) are involved in regulating plant growth, development and tolerance to environmental stresses. In this study, a total of 138 ABC transporter genes were identified in the lentil genome that were classified into eight subfamilies. Four lentil ABC transporters from subfamily B and I were clustered together with the previously characterized ABC transporter proteins related to aluminium (Al) detoxification. Lentil ABC transporter genes were distributed across the chromosomes. Tandem duplication was the main driving force for expansion of the ABC gene family. Collinearity of lentil with soybean indicated that ABC gene family is closely linked to Glycine max. ABC genes in the same subfamily showed similar gene structure and conserved motifs. The ABC promoter regions harboured a large number of plant hormones and multiple stress responsive cis-regulatory elements. The qRT-PCR showed that ABC genes had varied expression in roots of lentil at different time points under Al stress. This is the first report on genome wide identification and expression analyses of genes encoding ABC transporter genes in lentil which has provided in-depth insight for future research on evolution and elucidation of molecular mechanisms for aluminium tolerance.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Alumínio , Regulação da Expressão Gênica de Plantas , Lens (Planta) , Proteínas de Plantas , Estresse Fisiológico , Lens (Planta)/genética , Lens (Planta)/metabolismo , Lens (Planta)/efeitos dos fármacos , Alumínio/toxicidade , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Estresse Fisiológico/genética , Estresse Fisiológico/efeitos dos fármacos , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Família Multigênica , Perfilação da Expressão Gênica , Filogenia , Regiões Promotoras Genéticas/genética
2.
Physiol Plant ; 176(3): e14298, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685770

RESUMO

Aluminium (Al) toxicity causes major plant distress, affecting root growth, nutrient uptake and, ultimately, agricultural productivity. Lentil, which is a cheap source of vegetarian protein, is recognized to be sensitive to Al toxicity. Therefore, it is important to dissect the physiological and molecular mechanisms of Al tolerance in lentil. To understand the physiological system and proteome composition underlying Al tolerance, two genotypes [L-4602 (Al-tolerant) and BM-4 (Al-sensitive)] were studied at the seedling stage. L-4602 maintained a significantly higher root tolerance index and malate secretion with reduced Al accumulation than BM-4. Also, label-free proteomic analysis using ultra-performance liquid chromatography-tandem mass spectrometer exhibited significant regulation of Al-responsive proteins associated with antioxidants, signal transduction, calcium homeostasis, and regulation of glycolysis in L-4602 as compared to BM-4. Functional annotation suggested that transporter proteins (transmembrane protein, adenosine triphosphate-binding cassette transport-related protein and multi drug resistance protein), antioxidants associated proteins (nicotinamide adenine dinucleotide dependent oxidoreductase, oxidoreductase molybdopterin binding protein & peroxidases), kinases (calmodulin-domain kinase & protein kinase), and carbohydrate metabolism associated proteins (dihydrolipoamide acetyltransferase) were found to be abundant in tolerant genotype providing protection against Al toxicity. Overall, the root proteome uncovered in this study at seedling stage, along with the physiological parameters measured, allow a greater understanding of Al tolerance mechanism in lentil, thereby assisting in future crop improvement programmes.


Assuntos
Alumínio , Lens (Planta) , Proteínas de Plantas , Raízes de Plantas , Proteômica , Lens (Planta)/efeitos dos fármacos , Lens (Planta)/fisiologia , Lens (Planta)/genética , Lens (Planta)/metabolismo , Alumínio/toxicidade , Proteômica/métodos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Raízes de Plantas/genética , Genótipo , Plântula/efeitos dos fármacos , Plântula/fisiologia , Plântula/genética , Plântula/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteoma/metabolismo , Antioxidantes/metabolismo
3.
Physiol Mol Biol Plants ; 30(3): 497-511, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38633271

RESUMO

Ziziphus nummularia an elite heat-stress tolerant shrub, grows in arid regions of desert. However, its molecular mechanism responsible for heat stress tolerance is unexplored. Therefore, we analysed whole transcriptome of Jaisalmer (heat tolerant) and Godhra (heat sensitive) genotypes of Z. nummularia to understand its molecular mechanism responsible for heat stress tolerance. De novo assembly of 16,22,25,052 clean reads yielded 276,029 transcripts. A total of 208,506 unigenes were identified which contains 4290 and 1043 differentially expressed genes (DEG) in TGO (treated Godhra at 42 °C) vs. CGO (control Godhra) and TJR (treated Jaisalmer at 42 °C) vs. CJR (control Jaisalmer), respectively. A total of 987 (67 highly enriched) and 754 (34 highly enriched) pathways were obsorved in CGO vs. TGO and CJR vs. TJR, respectively. Antioxidant pathways and TFs like Homeobox, HBP, ARR, PHD, GRAS, CPP, and E2FA were uniquely observed in Godhra genotype and SET domains were uniquely observed in Jaisalmer genotype. Further transposable elements were highly up-regulated in Godhra genotype but no activation in Jaisalmer genotype. A total of 43,093 and 39,278 simple sequence repeats were identified in the Godhra and Jaisalmer genotypes, respectively. A total of 10 DEGs linked to heat stress were validated in both genotypes for their expression under different heat stresses using quantitative real-time PCR. Comparing expression patterns of the selected DEGs identified ClpB1 as a potential candidate gene for heat tolerance in Z. nummularia. Here we present first characterized transcriptome of Z. nummularia in response to heat stress for the identification and characterization of heat stress-responsive genes. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01431-y.

4.
Front Plant Sci ; 14: 1171479, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37260936

RESUMO

Sustaining crop yield under abiotic stresses with optimized resource use is a prerequisite for sustainable agriculture, especially in arid and semi-arid areas. Water and heat stress are major abiotic stresses impacting crop growth and yield by influencing complex physiological and biochemical processes during the life cycle of crops. In a 2-year (2015-2017) research, spring wheat cv. HD-2967 was grown under deficit irrigation and delayed sowing conditions to impose water and terminal heat stresses, respectively. The data were analyzed for seasonal crop water use, radiation interception, water productivity (WP), and radiation productivity (RP) under combined water deficit and terminal heat stresses. Seasonal crop water use was significantly affected by stresses in the order of water + terminal heat > water > terminal heat. Water stress showed minimal effect on the light extinction coefficient and consequently on seasonal intercepted photosynthetically active radiation (IPAR). However, seasonal IPAR was primarily affected by combined water + terminal heat and terminal heat stress alone. The slope of crop water use and IPAR, i.e., canopy conductance, an indicator of canopy stomatal conductance, was more influenced by water stress than by terminal heat stress. Results showed that linear proportionality between WP and RP is no longer valid under stress conditions, as it follows a curvilinear relation. This is further supported by the fact that independent productivity (either water or radiation) lacked the ability to explain variability in the final economic yield or biomass of wheat. However, the ratio of RP to WP explained the variability in wheat yield/biomass under individual or combined stresses. This suggests a clue for improving higher wheat yield under stress by managing WP and RP. The highest biomass or yield is realized when the ratio of RP to WP approaches unity. Screening of genotypes for traits leading to a higher ratio of RP to WP provides an opportunity for improving wheat productivity under stressed environments.

5.
Front Plant Sci ; 14: 1133115, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968399

RESUMO

Chalk, an undesirable grain quality trait in rice, is primarily formed due to high temperatures during the grain-filling process. Owing to the disordered starch granule structure, air spaces and low amylose content, chalky grains are easily breakable during milling thereby lowering head rice recovery and its market price. Availability of multiple QTLs associated with grain chalkiness and associated attributes, provided us an opportunity to perform a meta-analysis and identify candidate genes and their alleles contributing to enhanced grain quality. From the 403 previously reported QTLs, 64 Meta-QTLs encompassing 5262 non-redundant genes were identified. MQTL analysis reduced the genetic and physical intervals and nearly 73% meta-QTLs were narrower than 5cM and 2Mb, revealing the hotspot genomic regions. By investigating expression profiles of 5262 genes in previously published datasets, 49 candidate genes were shortlisted on the basis of their differential regulation in at least two of the datasets. We identified non-synonymous allelic variations and haplotypes in 39 candidate genes across the 3K rice genome panel. Further, we phenotyped a subset panel of 60 rice accessions by exposing them to high temperature stress under natural field conditions over two Rabi cropping seasons. Haplo-pheno analysis uncovered haplotype combinations of two starch synthesis genes, GBSSI and SSIIa, significantly contributing towards the formation of grain chalk in rice. We, therefore, report not only markers and pre-breeding material, but also propose superior haplotype combinations which can be introduced using either marker-assisted breeding or CRISPR-Cas based prime editing to generate elite rice varieties with low grain chalkiness and high HRY traits.

6.
Plants (Basel) ; 11(21)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36365310

RESUMO

Most cultivated potatoes are tetraploid, and the tuber is the main economic part that is consumed due to its calorific and nutritional values. Recent trends in climate change led to the frequent occurrence of heat and drought stress in major potato-growing regions worldwide. The optimum temperature for tuber production is 15-20 °C. High-temperature and water-deficient conditions during the growing season result in several morphological, physiological, biochemical, and molecular alterations. The morphological changes under stress conditions may affect the process of stolon formation, tuberization, and bulking, ultimately affecting the tuber yield. This condition also affects the physiological responses, including an imbalance in the allocation of photoassimilates, respiration, water use efficiency, transpiration, carbon partitioning, and the source-sink relationship. The biochemical responses under stress conditions involve maintaining ionic homeostasis, synthesizing heat shock proteins, achieving osmolyte balance, and generating reactive oxygen species, ultimately affecting various biochemical pathways. Different networks that include both gene regulation and transcription factors are involved at the molecular level due to the combination of hot and water-deficient conditions. This article attempts to present an integrative content of physio-biochemical and molecular responses under the combined effects of heat and drought, prominent factors in climate change. Taking into account all of these aspects and responses, there is an immediate need for comprehensive screening of germplasm and the application of appropriate approaches and tactics to produce potato cultivars that perform well under drought and in heat-affected areas.

7.
Front Genet ; 13: 884106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719375

RESUMO

Pennisetum glaucum (L.) R. Br., being widely grown in dry and hot weather, frequently encounters heat stress at various stages of growth. The crop, due to its inherent capacity, efficiently overcomes such stress during vegetative stages. However, the same is not always the case with the terminal (flowering through grain filling) stages of growth, where recovery from stress is more challenging. However, certain pearl millet genotypes such as 841-B are known to overcome heat stress even at the terminal growth stages. Therefore, we performed RNA sequencing of two contrasting genotypes of pearl millet (841-B and PPMI-69) subjected to heat stress (42°C for 6 h) at flowering stages. Over 274 million high quality reads with an average length of 150 nt were generated, which were assembled into 47,310 unigenes having an average length of 1,254 nucleotides, N50 length of 1853 nucleotides, and GC content of 53.11%. Blastx resulted in the annotation of 35,628 unigenes, and functional classification showed 15,950 unigenes designated to 51 Gene Ontology terms. A total of 13,786 unigenes were allocated to 23 Clusters of Orthologous Groups, and 4,255 unigenes were distributed to 132 functional Kyoto Encyclopedia of Genes and Genomes database pathways. A total of 12,976 simple sequence repeats and 305,759 SNPs were identified in the transcriptome data. Out of 2,301 differentially expressed genes, 10 potential candidate genes were selected based on log2 fold change and adjusted p value parameters for their differential gene expression by qRT-PCR. We were able to identify differentially expressed genes unique to either of the two genotypes, and also, some DEGs common to both the genotypes were enriched. The differential expression patterns suggested that 841-B 6 h has better ability to maintain homeostasis during heat stress as compared to PPMI-69 6 h. The sequencing data generated in this study, like the SSRs and SNPs, shall serve as an important resource for the development of genetic markers, and the differentially expressed heat responsive genes shall be used for the development of transgenic crops.

8.
Plant Mol Biol ; 110(4-5): 305-324, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35610527

RESUMO

Photosynthesis is the vital metabolism of the plant affected by abiotic stress such as high temperature and elevated [CO2] levels, which ultimately affect the source-sink relationship. Triose phosphate, the primary precursor of carbohydrate (starch and sucrose) synthesis in the plant, depends on environmental cues. The synthesis of starch in the chloroplasts of leaves (during the day), the transport of photoassimilates (sucrose) from source to sink, the loading and unloading of photoassimilates, and the accumulation of starch in the sink tissue all require a highly regulated network and communication system within the plant. These processes might be affected by high-temperature stress and elevated [CO2] conditions. Generally, elevated [CO2] levels enhance plant growth, photosynthetic rate, starch synthesis, and accumulation, ultimately diluting the nutrient of sink tissues. On the contrary, high-temperature stress is detrimental to plant development affecting photosynthesis, starch synthesis, sucrose synthesis and transport, and photoassimilate accumulation in sink tissues. Moreover, these environmental conditions also negatively impact the quality attributes such as grain/tuber quality, cooking quality, nutritional status in the edible parts and organoleptic traits. In this review, we have attempted to provide an insight into the source-sink relationship and the sugar metabolites synthesized and utilized by the plant under elevated [CO2] and high-temperature stress. This review will help future researchers comprehend the source-sink process for crop growth under changing climate scenarios.


Assuntos
Dióxido de Carbono , Fotossíntese , Dióxido de Carbono/metabolismo , Temperatura , Folhas de Planta/metabolismo , Sacarose/metabolismo , Amido/metabolismo , Carboidratos
9.
Plant Physiol Biochem ; 179: 134-143, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35344758

RESUMO

Wheat crop grown under elevated CO2 (EC) often have a lowered grain nitrogen (N) and protein concentration along with an altered grain ionome. The mechanistic understanding on the impact of CO2 x N interactions on the grain ionome and the expression of genes regulating grain ionome is scarce in wheat. In the present study, the interactive effect of EC and N dosage on grain yield, grain protein, grain ionome, tissue nitrate, and the expression of genes contributing to grain ionome (TaNAM-B1 and TaYSL6) are described. Three bread wheat genotypes were evaluated under two CO2 levels (Ambient CO2 (AC) of 400 ± 10 ppm and elevated CO2 (EC) of 700 ± 10 ppm) and two N levels (Low (LN) and Optimum N (ON). In EC, wheat genotypes HD2967 and HI 1500 recorded a significant decrease in grain nitrate content, while leaf and stem nitrate showed a significant increase. BT. Schomburgk (BTS), showed a significant increase in unassimilated nitrate and a decline in grain N and grain protein under EC. There was a general decline of grain ionome (N, P, K, Ca, Fe) in EC, except for grain Na content. The expression of genes TaNAM-B1 and TaYSL6 associated with protein and micronutrient remobilization to grains during senescence were affected by both EC and N treatments. For instance, in flag leaves of BTS, the expression of TaNAM-B1 and TaYSL6 were lower in EC-LN compared to AC-LN. In maturing spikes, transcript abundance of TaNAM-B1 and TaYSL6 were lower in EC in BTS. The altered transcript abundance of TaYSL6 and TaNAM-B1 in source and sink supports the change in grain ionome and suggests an N dependent transcriptional reprogramming in EC.


Assuntos
Pão , Triticum , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Expressão Gênica , Nitrogênio/metabolismo , Triticum/metabolismo
10.
PeerJ ; 10: e12766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35291490

RESUMO

The development of phosphorus-efficient crop cultivars boosts productivity while lowering eutrophication in the environment. It is feasible to improve the efficiency of phosphorus (P) absorption in lentils by enhancing phosphorus absorption through root architectural traits. The root architectural traits of 110 diverse lentil genotypes of Indian and Mediterranean origin were assessed, and the relationships between traits were investigated. In a hydroponics experiment, the lentil lines were examined at the seedling stage under two conditions: adequate P supply and deficient P supply. The Pearson correlation coefficients between root architectural traits and genetic diversity among lentil lines were assessed. To estimate variance components, a model (fixed factor) was used. In this experiment, both phosphorus (P) and genotype were fixed variables. Our lentil lines showed significant genetic variability and considerable genetic diversity for all traits under both treatments. The TRL (total root length) and PRL (primary root length) showed strong positive associations with all other characteristics excluding root average diameter (RAD) in both P treatments. In both P treatments, the RAD revealed a negative significant association with Total Root Tips (TRT), as well as total root volume (TRV) and total root forks (TRF) in the deficit conditions of P. Total root volume (TRV), total surface area (TSA), and total root tips had higher coefficient variance values. The first two principal components represented 67.88% and 66.19% of the overall variance in the adequate and deficit P treatments respectively. The Shannon-Weaver diversity index (H') revealed that RAD, PRL, and TSA had more variability than TRT and TRF under both treatments. According to the Comprehensive Phosphorus Efficiency Measure (CPEM), the best five highly efficient genotypes are PLL 18-09, PLS 18-01, PLL 18-25, PLS 18-23, and PLL 18-07, while IG112131, P560206, IG334, L11-231, and PLS18-67 are highly inefficient genotypes. The above contrasting diverse lentil genotypes can be utilized to produce P-efficient lentil cultivars. The lentil germplasm with potentially favorable root traits can be suggested to evaluated for other abiotic stress to use them in crop improvement programme. The scientific breakthroughs in root trait phenotyping have improved the chances of establishing trait-allele relationships. As a result, genotype-to-phenotype connections can be predicted and verified with exceptional accuracy, making it easier to find and incorporate favourable nutrition-related genes/QTLs in to breeding programme.


Assuntos
Lens (Planta) , Lens (Planta)/genética , Fósforo , Melhoramento Vegetal , Fenótipo , Genótipo
11.
Plant Cell Rep ; 41(3): 501-518, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34542670

RESUMO

Increasing temperature is a key component of global climate change, affecting crop growth and productivity worldwide. Wheat is a major cereal crop grown in various parts of the globe, which is affected severely by heat stress. The morphological parameters affected include germination, seedling establishment, source-sink activity, leaf area, shoot and root growth. The physiological parameters such as photosynthesis, respiration, leaf senescence, water and nutrient relation are also affected by heat. At the cellular level, heat stress leads to the generation of reactive oxygen species that disrupt the membrane system of thylakoid, chloroplast and plasma membrane. The deactivation of the photosystem, reduction in photosynthesis and inactivation of rubisco affect the production of photoassimilates and their allocation. This ultimately affects anthesis, grain filling, size, number and maturity of wheat grains, which hamper crop productivity. The interplay of various systems comprising antioxidants and hormones plays a crucial role in imparting heat stress tolerance in wheat. Thus, implementation of various omics technologies could foster in-depth insights on heat stress effects, eventually devising heat stress mitigation strategies by conventional and modern breeding to develop heat-tolerant wheat varieties. This review provides an integrative view of heat stress responses in wheat and also discusses approaches to develop heat-tolerant wheat varieties.


Assuntos
Melhoramento Vegetal , Triticum , Grão Comestível , Resposta ao Choque Térmico , Fotossíntese , Estresse Fisiológico , Triticum/metabolismo
12.
PLoS One ; 16(3): e0247810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33661994

RESUMO

Mungbean (Vigna radiata L.) is an important food grain legume, but its production capacity is threatened by global warming, which can intensify plant stress and limit future production. Identifying new variation of key root traits in mungbean will provide the basis for breeding lines with effective root characteristics for improved water uptake to mitigate heat and drought stress. The AVRDC mungbean mini core collection consisting of 296 genotypes was screened under modified semi-hydroponic screening conditions to determine the variation for fourteen root-related traits. The AVRDC mungbean mini core collection displayed wide variations for the primary root length, total surface area, and total root length, and based on agglomerative hierarchical clustering eight homogeneous groups displaying different root traits could be identified. Germplasm with potentially favorable root traits has been identified for further studies to identify the donor genotypes for breeding cultivars with enhanced adaptation to water-deficit stress and other stress conditions.


Assuntos
Aquecimento Global , Melhoramento Vegetal/métodos , Raízes de Plantas/crescimento & desenvolvimento , Vigna/crescimento & desenvolvimento , Variação Genética , Genótipo , Fenótipo , Raízes de Plantas/genética , Taiwan , Vigna/genética
13.
Front Plant Sci ; 11: 537766, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193476

RESUMO

Mungbean (Vigna radiata L. Wilczek) is an annual grain legume crop affected by low availability of phosphorus. Phosphorus deficiency mainly affects the growth and development of plants along with changes in root morphology and increase in root-to-shoot ratio. Deciphering the genetic basis of phosphorus use efficiency (PUE) traits can benefit our understanding of mungbean tolerance to low-phosphorus condition. To address this issue, 144 diverse mungbean genotypes were evaluated for 12 PUE traits under hydroponics with optimum- and low-phosphorus levels. The broad sense heritability of traits ranged from 0.63 to 0.92 and 0.58 to 0.92 under optimum- and low-phosphorus conditions, respectively. This study, reports for the first time such a large number of genome wide Single nucleotide polymorphisms (SNPs) (76,160) in mungbean. Further, genome wide association study was conducted using 55,634 SNPs obtained by genotyping-by-sequencing method. The results indicated that total 136 SNPs shared by both GLM and MLM models were associated with tested PUE traits under different phosphorus regimes. We have identified SNPs with highest p value (-log10(p)) for some traits like, TLA and RDW with p value (-log10(p)) of more than 6.0 at LP/OP and OP condition. We have identified nine SNPs (three for TLA and six for RDW trait) which was found to be present in chromosomes 8, 4, and 7. One SNP present in Vradi07g06230 gene contains zinc finger CCCH domain. In total, 71 protein coding genes were identified, of which 13 genes were found to be putative candidate genes controlling PUE by regulating nutrient uptake and root architectural development pathways in mungbean. Moreover, we identified three potential candidate genes VRADI11G08340, VRADI01G05520, and VRADI04G10750 with missense SNPs in coding sequence region, which results in significant variation in protein structure at tertiary level. The identified SNPs and candidate genes provide the essential information for genetic studies and marker-assisted breeding program for improving low-phosphorus tolerance in mungbean.

14.
Physiol Mol Biol Plants ; 26(9): 1773-1785, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32943815

RESUMO

Chickpea being a winter season crop often experiences heat stress during reproductive phase. For chickpea production, terminal heat stress is one of the major constraints. Plants have built up numerous mechanisms to combat the heat stress. We considered the photosynthetic pigments for heat tolerance. Therefore, in order to investigate the heat tolerance in relation to photosynthetic pigments, a field trial was carried out having 4 contrasting genotypes namely BG 240 and JG 14 (relatively heat tolerant), SBD 377 (moderately tolerant) and ICC 1882 (relatively heat sensitive). Heat stress was imposed by altering the sowing date i.e. normal (18th November) and late sown (18th December). Under delayed sown condition, heat stress was faced by crop starting from flowering stage to crop maturity. Under heat stress condition, heat tolerant genotypes BG 240 and JG 14 maintained higher level of membrane stability, RWC (%), osmolytes, dry matter partitioning, grain yield, heat tolerance index and had higher values of zeaxanthin, quantum yield of PS II (Fv/Fm ratio), non-photochemical quenching (NPQ), photosynthetic rate, level of photosynthetic pigments (chlorophylls and carotenoids) and lower level of violaxanthin, and lipid peroxidation as compared to heat sensitive one (ICC 1882). In addition to this, Fv/Fm ratio and NPQ exhibited positive relationship with heat tolerance which suggested the involvement of xanthophyll cycle pigments in chickpea heat tolerance.

15.
Plant Physiol Biochem ; 156: 7-19, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32891968

RESUMO

A genomic resource of drought stress responsive genes/ESTs was generated using Suppression Subtractive Hybridization (SSH) approach in a drought stress tolerant Pennisetum glaucum genotype 841B. Fifty five days old plants were subjected to drought stress after withholding water for different time intervals (10 days, 15 days, 20 days and 25 days). A forward subtractive cDNA library was prepared from isolated RNA of leaf tissue. Differential gene expression under drought stress was validated for selected nine contigs by RT-qPCR. A transcript homologous to Setaria italica ASR3 upregulated under drought stress was isolated from genotype 841B and characterized. Heterologous expression of PgASR3 was validated in Arabidopsis and confirmed under multiple abiotic stress conditions. A total of four independent transgenic lines overexpressing gene PgASR3 were analyzed by Southern blot at T1 stage. For drought stress tolerance, three independent lines (T2 stage) were analyzed by biochemical and physiological assays at seedling stage. The growth rate (shoot and root length) of transgenic seedlings improved as compared to WT seedling under differenct abiotic stress conditions. The three transgenic lines were also validated for drought stress tolerance and RT-qPCR analysis, at maturity stage. Under drought stress conditions, the mature transgenic lines showed higher levels of RWC, chlorophyll and proline but lower levels of MDA as compared to WT plants. PgASR3 gene isolated and validated in this study can be utilized for developing abiotic stress tolerant crops.


Assuntos
Arabidopsis/fisiologia , Secas , Pennisetum/genética , Proteínas de Plantas/fisiologia , Estresse Fisiológico , Fatores Genéricos de Transcrição/fisiologia , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/fisiologia , Técnicas de Hibridização Subtrativa , Fatores Genéricos de Transcrição/genética
16.
PLoS One ; 15(6): e0221008, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32525951

RESUMO

Roots enable the plant to survive in the natural environment by providing anchorage and acquisition of water and nutrients. In this study, root architectural traits of 153 mungbean genotypes were compared under optimum and low phosphorus (P) conditions. Significant variations and medium to high heritability were observed for the root traits. Total root length was positively and significantly correlated with total root surface area, total root volume, total root tips and root forks under both optimum P (r = 0.95, r = 0.85, r = 0.68 and r = 0.82 respectively) and low P (r = 0.95, r = 0.82, r = 0.71 and r = 0.81 respectively). The magnitudes of the coefficient of variations were relatively higher for root forks, total root tips and total root volume. Total root length, total root surface area and total root volume were major contributors of variation and can be utilized for screening of P efficiency at the seedling stage. Released Indian mungbean varieties were found to be superior for root traits than other genotypic groups. Based on comprehensive P efficiency measurement, IPM-288, TM 96-25, TM 96-2, M 1477, PUSA 1342 were found to be the best highly efficient genotypes, whereas M 1131, PS-16, Pusa Vishal, M 831, IC 325828 were highly inefficient. Highly efficient genotypes identified would be valuable genetic resources for P efficiency for utilizing in the mungbean breeding programme.


Assuntos
Variação Genética , Fósforo/deficiência , Raízes de Plantas/genética , Plântula/crescimento & desenvolvimento , Vigna/genética , Vigna/metabolismo , Genótipo , Estresse Fisiológico/genética , Vigna/crescimento & desenvolvimento , Vigna/fisiologia
17.
Int J Genomics ; 2018: 8319879, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29785398

RESUMO

Marker-assisted selection is an unequivocal translational research tool for crop improvement in the genomics era. Pusa Basmati 1 (PB1) is an elite Indian Basmati rice cultivar sensitive to salinity. Here, we report enhanced seedling stage salt tolerance in improved PB1 genotypes developed through marker-assisted transfer of a major QTL, Saltol. A highly salt tolerant line, FL478, was used as the Saltol donor. Parental polymorphism survey using 456 microsatellite (SSR)/QTL-linked markers revealed 14.3% polymorphism between PB1 and FL478. Foreground selection was carried out using three Saltol-linked polymorphic SSR markers RM8094, RM493, and RM10793 and background selection by 62 genome-wide polymorphic SSR markers. In every backcross generation, foreground selection was restricted to the triple heterozygotes of foreground markers, which was followed by phenotypic and background selections. Twenty-four near isogenic lines (NILs), with recurrent parent genome recovery of 96.0-98.4%, were selected after two backcrosses followed by three selfing generations. NILs exhibited agronomic traits similar to those of PB1 and additional improvement in the seedling stage salt tolerance. They are being tested for per se performance under salt-affected locations for release as commercial varieties. These NILs appear promising for enhancing rice production in salinity-affected pockets of Basmati Geographical Indication (GI) areas of India.

18.
Artigo em Inglês | MEDLINE | ID: mdl-29568154

RESUMO

Influence of elevated CO2 (570 ± 25 ppm) and elevated temperature (≃3 °C higher than ambient) on rice (Oryzasativa L.) and brown planthopper (BPH), Nilaparvata lugens (Stal.) was studied in open top chambers during rainy season of 2013. Elevated CO2 and temperature exhibited positive effect on BPH multiplication thus enhancing its population (55.2 ± 5.7 hoppers/hill) in comparison to ambient CO2 and temperature (25.5 ± 2.1 hoppers/hill). Elevated CO2 + temperature significantly reduced the adult longevity and nymphal duration by 17.4 and 18.5 % respectively, however elevated conditions increased BPH fecundity by 29.5 %. In rice crop, interactive effect of elevated CO2 and temperature led to an increase in the number of tillers (20.1 %) and canopy circumference (30.4 %), but resulted in a decrease of reproductive tillers (10.8 %), seeds/panicle (10.9 %) and 1000-seed weight (8.6 %) thereby reducing grain yield (9.8 %). Moreover, positive effect of increased CO2 concentration and temperature on BPH population exacerbates the damage (30.6) which in turn coupled with the plant traits to hampering production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...