RESUMO
Dynamic control of gene expression is critical for blood stage development of malaria parasites. Here, we used multi-omic analyses to investigate transcriptional regulation by the chromatin-associated microrchidia protein, MORC, during asexual blood stage development of the human malaria parasite Plasmodium falciparum. We show that PfMORC (PF3D7_1468100) interacts with a suite of nuclear proteins, including APETALA2 (ApiAP2) transcription factors (PfAP2-G5, PfAP2-O5, PfAP2-I, PF3D7_0420300, PF3D7_0613800, PF3D7_1107800, and PF3D7_1239200), a DNA helicase DS60 (PF3D7_1227100), and other chromatin remodelers (PfCHD1 and PfEELM2). Transcriptomic analysis of PfMORCHA-glmS knockdown parasites revealed 163 differentially expressed genes belonging to hypervariable multigene families, along with upregulation of genes mostly involved in host cell invasion. In vivo genome-wide chromatin occupancy analysis during both trophozoite and schizont stages of development demonstrates that PfMORC is recruited to repressed, multigene families, including the var genes in subtelomeric chromosomal regions. Collectively, we find that PfMORC is found in chromatin complexes that play a role in the epigenetic control of asexual blood stage transcriptional regulation and chromatin organization.
Assuntos
Epigênese Genética , Heterocromatina , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Humanos , Regulação da Expressão Gênica , Malária Falciparum/parasitologiaRESUMO
BACKGROUND: Fabry disease (FD) is a rare X-linked lysosomal storage disorder marked by alpha-galactosidase-A (α-Gal A) deficiency, caused by pathogenic mutations in the GLA gene, resulting in the accumulation of glycosphingolipids within lysosomes. The current screening test relies on measuring α-Gal A activity. However, this approach is limited to males. Infrared (IR) spectroscopy is a technique that can generate fingerprint spectra of a biofluid's molecular composition and has been successfully applied to screen numerous diseases. Herein, we investigate the discriminating vibration profile of plasma chemical bonds in patients with FD using attenuated total reflection Fourier-transform IR (ATR-FTIR) spectroscopy. RESULTS: The Fabry disease group (n = 47) and the healthy control group (n = 52) recruited were age-matched (39.2 ± 16.9 and 36.7 ± 10.9 years, respectively), and females were predominant in both groups (59.6% and 65.4%, respectively). All patients had the classic phenotype (100%), and no late-onset phenotype was detected. A generated partial least squares discriminant analysis (PLS-DA) classification model, independent of gender, allowed differentiation of samples from FD vs. control groups, reaching 100% sensitivity, specificity and accuracy. CONCLUSION: ATR-FTIR spectroscopy harnessed to pattern recognition algorithms can distinguish between FD patients and healthy control participants, offering the potential of a fast and inexpensive screening test.
Assuntos
Doença de Fabry , Doença de Fabry/diagnóstico , Humanos , Masculino , Feminino , Adulto , Projetos Piloto , Pessoa de Meia-Idade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adulto Jovem , Espectrofotometria Infravermelho/métodos , alfa-Galactosidase/genéticaRESUMO
Lung cancer is one of the most commonly occurring malignant tumours worldwide. Although some reference methods such as X-ray, computed tomography or bronchoscope are widely used for clinical diagnosis of lung cancer, there is still a need to develop new methods for early detection of lung cancer. Especially needed are approaches that might be non-invasive and fast with high analytical precision and statistically reliable. Herein, we developed a swab "dip" test in saliva whereby swabs were analysed using attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy harnessed to principal component analysis-quadratic discriminant analysis (QDA) and variable selection techniques employing successive projections algorithm (SPA) and genetic algorithm (GA) for feature selection/extraction combined with QDA. A total of 1944 saliva samples (56 designated as lung-cancer positive and 1888 designed as controls) were obtained in a lung cancer-screening programme being undertaken in North-West England. GA-QDA models achieved, for the test set, sensitivity and specificity values of 100.0% and 99.1%, respectively. Three wavenumbers (1422 cm-1, 1546 cm-1 and 1578 cm-1) were identified using the GA-QDA model to distinguish between lung cancer and controls, including ring C-C stretching, CîN adenine, Amide II [δ(NH), ν(CN)] and νs(COO-) (polysaccharides, pectin). These findings highlight the potential of using biospectroscopy associated with multivariate classification algorithms to discriminate between benign saliva samples and those with underlying lung cancer.
Assuntos
Neoplasias Pulmonares , Análise de Componente Principal , Saliva , Humanos , Saliva/química , Neoplasias Pulmonares/diagnóstico , Análise Discriminante , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Algoritmos , Masculino , Feminino , Pessoa de Meia-Idade , IdosoRESUMO
Attenuated Total Reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy is an emerging technology in the medical field. Blood D-dimer was initially studied as a marker of the activation of coagulation and fibrinolysis. It is mainly used as a potential diagnosis screening test for pulmonary embolism or deep vein thrombosis but was recently associated with COVID-19 severity. This study aimed to evaluate the use of ATR-FTIR spectroscopy with machine learning to classify plasma D-dimer concentrations. The plasma ATR-FTIR spectra from 100 patients were studied through principal component analysis (PCA) and two supervised approaches: genetic algorithm with linear discriminant analysis (GA-LDA) and partial least squares with linear discriminant (PLS-DA). The spectra were truncated to the fingerprint region (1800-1000 cm-1). The GA-LDA method effectively classified patients according to D-dimer cutoff (≤0.5 µg/mL and >0.5 µg/mL) with 87.5 % specificity and 100 % sensitivity on the training set, and 85.7 % specificity, and 95.6 % sensitivity on the test set. Thus, we demonstrate that ATR-FTIR spectroscopy might be an important additional tool for classifying patients according to D-dimer values. ATR-FTIR spectral analyses associated with clinical evidence can contribute to a faster and more accurate medical diagnosis, reduce patient morbidity, and save resources and demand for professionals.
Assuntos
Espectroscopia de Infravermelho com Transformada de Fourier , Humanos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise de Fourier , Análise Discriminante , Análise de Componente Principal , Proteínas Mutadas de Ataxia TelangiectasiaRESUMO
The use of non-invasive tools in conjunction with artificial intelligence (AI) to detect diseases has the potential to revolutionize healthcare. Near-infrared spectroscopy (NIR) is a technology that can be used to analyze biological samples in a non-invasive manner. This study evaluated the use of NIR spectroscopy in the fingertip to detect neutropenia in solid-tumor oncologic patients. A total of 75 patients were enrolled in the study. Fingertip NIR spectra and complete blood counts were collected from each patient. The NIR spectra were pre-processed using Savitzky-Golay smoothing and outlier detection. The pre-processed data were split into training/validation and test sets using the Kennard-Stone method. A toolbox of supervised machine learning classification algorithms was applied to the training/validation set using a stratified 5-fold cross-validation regimen. The algorithms included linear discriminant analysis (LDA), logistic regression (LR), random forest (RF), multilayer perceptron (MLP), and support vector machines (SVMs). The SVM model performed best in the validation step, with 85% sensitivity, 89% negative predictive value (NPV), and 64% accuracy. The SVM model showed 67% sensitivity, 82% NPV, and 57% accuracy on the test set. These results suggest that NIR spectroscopy in the fingertip, combined with machine learning methods, can be used to detect neutropenia in solid-tumor oncology patients in a non-invasive and timely manner. This approach could help reduce exposure to invasive tests and prevent neutropenic patients from inadvertently undergoing chemotherapy.
RESUMO
Rapid identification of existing respiratory viruses in biological samples is of utmost importance in strategies to combat pandemics. Inputting MALDI FT-ICR MS (matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry) data output into machine learning algorithms could hold promise in classifying positive samples for SARS-CoV-2. This study aimed to develop a fast and effective methodology to perform saliva-based screening of patients with suspected COVID-19, using the MALDI FT-ICR MS technique with a support vector machine (SVM). In the method optimization, the best sample preparation was obtained with the digestion of saliva in 10 µL of trypsin for 2 h and the MALDI analysis, which presented a satisfactory resolution for the analysis with 1 M. SVM models were created with data from the analysis of 97 samples that were designated as SARS-CoV-2 positives versus 52 negatives, confirmed by RT-PCR tests. SVM1 and SVM2 models showed the best results. The calibration group obtained 100% accuracy, and the test group 95.6% (SVM1) and 86.7% (SVM2). SVM1 selected 780 variables and has a false negative rate (FNR) of 0%, while SVM2 selected only two variables with a FNR of 3%. The proposed methodology suggests a promising tool to aid screening for COVID-19.
Assuntos
COVID-19 , COVID-19/diagnóstico , Teste para COVID-19 , Análise de Fourier , Humanos , Aprendizado de Máquina , SARS-CoV-2 , Saliva , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodosRESUMO
Melatonin acts to synchronize the parasite's intraerythrocytic cycle by triggering the phospholipase C-inositol 1,4,5-trisphosphate (PLC-IP3) signaling cascade. Compounds with an indole scaffold impair in vitro proliferation of blood-stage malaria parasites, indicating that this class of compounds is potentially emerging antiplasmodial drugs. Therefore, we aimed to study the role of the alkyl and aryl thiol moieties of 14 synthetic indole compounds against chloroquine-sensitive (3D7) and chloroquine-resistant (Dd2) strains of Plasmodium falciparum. Four compounds (3, 26, 18, 21) inhibited the growth of P. falciparum (3D7) by 50% at concentrations below 20 µM. A set of 2-sulfenylindoles also showed activity against Dd2 parasites. Our data suggest that Dd2 parasites are more susceptible to compounds 20 and 28 than 3D7 parasites. These data show that 2-sulfenylindoles are promising antimalarials against chloroquine-resistant parasite strains. We also evaluated the effects of the 14 compounds on the parasitemia of the 3D7 strain and their ability to interfere with the effect of 100 nM melatonin on the parasitemia of the 3D7 strain. Our results showed that compounds 3, 7, 8, 10, 14, 16, 17, and 20 slightly increased the effect of melatonin by increasing parasitemia by 8-20% compared with that of melatonin-only-treated 3D7 parasites. Moreover, we found that melatonin modulates the expression of kinase-related signaling components giving additional evidence to investigate inhibitors that can block melatonin signaling.
Assuntos
Malária Falciparum , Malária , Melatonina , Parasitos , Animais , Cloroquina/farmacologia , Humanos , Indóis/metabolismo , Indóis/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Melatonina/metabolismo , Melatonina/farmacologia , Parasitemia , Plasmodium falciparumRESUMO
â¢Discuss molecular components for the coordination of circadian rhythm of malaria parasites inside the vertebrate host.â¢Synthetic indole compounds show antimalarial activity in vitro against P.falciparum 3D7.â¢Plasmodium falciparum synchronizes in cell culture upon melatonin treatment.
RESUMO
The host hormone melatonin is known to modulate the asexual cell-cycle of the human malaria parasite Plasmodium falciparum and the kinase PfPK7 is fundamental in the downstream signaling pathways. The nuclear protein PfMORC displays a histidine kinase domain and is involved in parasite cell cycle control. By using a real-time assay, we show a 24 h (h) rhythmic expression of PfMORC at the parasite asexual cycle and the expression is dramatically changed when parasites were treated with 100 nM melatonin for 17 h. Moreover, PfMORC expression was severely affected in PfPK7 knockout (PfPK7-) parasites following melatonin treatment. Parasites expressing 3D7morc-GFP shows nuclear localization of the protein during the asexual stage of parasite development. Although the PfMORC knockdown had no significant impact on the parasite proliferation in vitro it significantly changed the ratio of the different asexual intraerythrocytic stages of the parasites upon the addition of melatonin. Our data reveal that in addition to the upstream melatonin signaling pathways such as IP3 generation, calcium, and cAMP rise, a nuclear protein, PfMORC is essential for the hormone response in parasite synchronization.
Assuntos
Malária Falciparum/genética , Proteínas Nucleares/genética , Plasmodium falciparum/genética , Animais , Eritrócitos/parasitologia , Humanos , Malária Falciparum/parasitologia , Melatonina/genética , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Reprodução Assexuada/genéticaRESUMO
There is an urgent need for ultrarapid testing regimens to detect the severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2] infections in real-time within seconds to stop its spread. Current testing approaches for this RNA virus focus primarily on diagnosis by RT-qPCR, which is time-consuming, costly, often inaccurate, and impractical for general population rollout due to the need for laboratory processing. The latency until the test result arrives with the patient has led to further virus spread. Furthermore, latest antigen rapid tests still require 15-30 min processing time and are challenging to handle. Despite increased polymerase chain reaction (PCR)-test and antigen-test efforts, the pandemic continues to evolve worldwide. Herein, we developed a superfast, reagent-free, and nondestructive approach of attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy with subsequent chemometric analysis toward the prescreening of virus-infected samples. Contrived saliva samples spiked with inactivated γ-irradiated COVID-19 virus particles at levels down to 1582 copies/mL generated infrared (IR) spectra with a good signal-to-noise ratio. Predominant virus spectral peaks are tentatively associated with nucleic acid bands, including RNA. At low copy numbers, the presence of a virus particle was found to be capable of modifying the IR spectral signature of saliva, again with discriminating wavenumbers primarily associated with RNA. Discrimination was also achievable following ATR-FTIR spectral analysis of swabs immersed in saliva variously spiked with virus. Next, we nested our test system in a clinical setting wherein participants were recruited to provide demographic details, symptoms, parallel RT-qPCR testing, and the acquisition of pharyngeal swabs for ATR-FTIR spectral analysis. Initial categorization of swab samples into negative versus positive COVID-19 infection was based on symptoms and PCR results (n = 111 negatives and 70 positives). Following training and validation (using n = 61 negatives and 20 positives) of a genetic algorithm-linear discriminant analysis (GA-LDA) algorithm, a blind sensitivity of 95% and specificity of 89% was achieved. This prompt approach generates results within 2 min and is applicable in areas with increased people traffic that require sudden test results such as airports, events, or gate controls.
Assuntos
Algoritmos , COVID-19/diagnóstico , SARS-CoV-2/fisiologia , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Vírion/química , COVID-19/virologia , Análise Discriminante , Raios gama , Humanos , Testes Imediatos , Análise de Componente Principal , SARS-CoV-2/isolamento & purificação , Saliva/virologia , Sensibilidade e Especificidade , Razão Sinal-Ruído , Vírion/efeitos da radiação , Inativação de VírusRESUMO
The indoleamine compound melatonin has been extensively studied in the regulation of the circadian rhythm in nearly all vertebrates. The effects of melatonin have also been studied in Protozoan parasites, especially in the synchronization of the human malaria parasite Plasmodium falciparum via a complex downstream signalling pathway. Melatonin activates protein kinase A (PfPKA) and requires the activation of protein kinase 7 (PfPK7), PLC-IP3, and a subset of genes from the ubiquitin-proteasome system. In other parasites, such as Trypanosoma cruzi and Toxoplasma gondii, melatonin increases inflammatory components, thus amplifying the protective response of the host's immune system and affecting parasite load. The development of melatonin-related indole compounds exhibiting antiparasitic properties clearly suggests this new and effective approach as an alternative treatment. Therefore, it is critical to understand how melatonin confers stimulatory functions in host-parasite biology.
Assuntos
Malária Falciparum/parasitologia , Melatonina/fisiologia , Plasmodium falciparum/fisiologia , Animais , Antimaláricos/farmacologia , Humanos , Estágios do Ciclo de Vida , Malária Falciparum/imunologia , Melatonina/farmacologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/imunologia , Reprodução Assexuada , Transdução de SinaisRESUMO
We report the discovery of marinoquinoline (3 H-pyrrolo[2,3- c]quinoline) derivatives as new chemotypes with antiplasmodial activity. We evaluated their inhibitory activities against P. falciparum and conducted a structure-activity relationship study, focusing on improving their potency and maintaining low cytotoxicity. Next, we devised quantitative structure-activity relationship (QSAR) models, which we prospectively validated, to discover new analogues with enhanced potency. The most potent compound, 50 (IC503d7 = 39 nM; IC50K1 = 41 nM), is a fast-acting inhibitor with dual-stage (blood and liver) activity. The compound showed considerable selectivity (SI > 6410), an additive effect when administered in combination with artesunate, excellent tolerability in mice (all mice survived after an oral treatment with a 1000 mg/kg dose), and oral efficacy at 50 mg/kg in a mouse model of P. berghei malaria (62% reduction in parasitemia on day 5 postinfection); thus, compound 50 was considered a lead compound for the discovery of new antimalarial agents.
Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Desenho de Fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/química , Quinolinas/farmacologia , Animais , Camundongos , Modelos Moleculares , Conformação Molecular , Relação Quantitativa Estrutura-AtividadeRESUMO
The malaria parasite Plasmodium falciparum is exposed, during its development, to major changes of ionic composition in its surrounding medium. We demonstrate that the P. falciparum serpentine-like receptor PfSR25 is a monovalent cation sensor capable of modulating Ca2+ signaling in the parasites. Changing from high (140 mM) to low (5.4 mM) KCl concentration triggers [Ca2+]cyt increase in isolated parasites and this Ca2+ rise is blocked either by phospholipase C (PLC) inhibition or by depleting the parasite's internal Ca2+ pools. This response persists even in the absence of free extracellular Ca2+ and cannot be elicited by addition of Na+, Mg2+ or Ca2+. However, when the PfSR25 gene was deleted, no effect on [Ca2+]cyt was observed in response to changing KCl concentration in the knocked out (PfSR25 -) parasite. Finally, we also demonstrate that: i) PfSR25 plays a role in parasite volume regulation, as hyperosmotic stress induces a significant decrease in parasite volume in wild type (wt), but not in PfSR25 - parasites; ii) parasites lacking PfSR25 show decreased parasitemia and metacaspase gene expression on exposure to the nitric oxide donor sodium nitroprusside (SNP) and iii), compared to PfSR25 - parasites, wt parasites showed a better survival in albumax-deprived condition.
Assuntos
Sinalização do Cálcio , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Potássio/metabolismo , Proteínas de Protozoários/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Estresse Fisiológico , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Carga Parasitária , Proteínas de Protozoários/genética , Receptores Acoplados a Proteínas G/genéticaRESUMO
In mammals, haem degradation to biliverdin (BV) through the action of haem oxygenase (HO) is a critical step in haem metabolism. The malaria parasite converts haem into the chemically inert haemozoin to avoid toxicity. We discovered that the knock-out of HO in P. berghei is lethal; therefore, we investigated the function of biliverdin (BV) and haem in the parasite. Addition of external BV and haem to P. falciparum-infected red blood cell (RBC) cultures delays the progression of parasite development. The search for a BV molecular target within the parasites identified P. falciparum enolase (Pf enolase) as the strongest candidate. Isothermal titration calorimetry using recombinant full-length Plasmodium enolase suggested one binding site for BV. Kinetic assays revealed that BV is a non-competitive inhibitor. We employed molecular modelling studies to predict the new binding site as well as the binding mode of BV to P. falciparum enolase. Furthermore, addition of BV and haem targets the phosphorylation of Plasmodium falciparum eIF2α factor, an eukaryotic initiation factor phosphorylated by eIF2α kinases under stress conditions. We propose that BV targets enolase to reduce parasite glycolysis rates and changes the eIF2α phosphorylation pattern as a molecular mechanism for its action.