Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Infect Dis ; 19(1): 221, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832594

RESUMO

BACKGROUND: Self-protective behaviors of social distancing and vaccination uptake vary by demographics and affect the transmission dynamics of influenza in the United States. By incorporating the socio-behavioral differences in social distancing and vaccination uptake into mathematical models of influenza transmission dynamics, we can improve our estimates of epidemic outcomes. In this study we analyze the impact of demographic disparities in social distancing and vaccination on influenza epidemics in urban and rural regions of the United States. METHODS: We conducted a survey of a nationally representative sample of US adults to collect data on their self-protective behaviors, including social distancing and vaccination to protect themselves from influenza infection. We incorporated this data in an agent-based model to simulate the transmission dynamics of influenza in the urban region of Miami Dade county in Florida and the rural region of Montgomery county in Virginia. RESULTS: We compare epidemic scenarios wherein the social distancing and vaccination behaviors are uniform versus non-uniform across different demographic subpopulations. We infer that a uniform compliance of social distancing and vaccination uptake among different demographic subpopulations underestimates the severity of the epidemic in comparison to differentiated compliance among different demographic subpopulations. This result holds for both urban and rural regions. CONCLUSIONS: By taking into account the behavioral differences in social distancing and vaccination uptake among different demographic subpopulations in analysis of influenza epidemics, we provide improved estimates of epidemic outcomes that can assist in improved public health interventions for prevention and control of influenza.


Assuntos
Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Distância Psicológica , Adolescente , Adulto , Idoso , Epidemias , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Influenza Humana/epidemiologia , Masculino , Pessoa de Meia-Idade , Modelos Teóricos , População Rural , Estados Unidos/epidemiologia , População Urbana , Vacinação , Adulto Jovem
2.
Artigo em Inglês | MEDLINE | ID: mdl-34305482

RESUMO

Computational epidemiologists frequently employ large-scale agent-based simulations of human populations to study disease outbreaks and assess intervention strategies. The agents used in such simulations rarely capture the real-world decision-making of human beings. An absence of realistic agent behavior can undermine the reliability of insights generated by such simulations and might make them ill-suited for informing public health policies. In this paper, we address this problem by developing a methodology to create and calibrate an agent decision making model for a large multi-agent simulation, using survey data. Our method optimizes a cost vector associated with the various behaviors to match the behavior distributions observed in a detailed survey of human behaviors during influenza outbreaks. Our approach is a data-driven way of incorporating decision making for agents in large-scale epidemic simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...