Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Int J Pharm ; : 124450, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986968

RESUMO

Wounds pose a formidable challenge in healthcare, necessitating the exploration of innovative tissue-healing solutions. Traditional wound dressings exhibit drawbacks, causing tissue damage and impeding natural healing. Using a Microwave (MW)-)-assisted technique, we envisaged a novel hydrogel (Hg) scaffold to address these challenges. This hydrogel scaffold was created by synthesizing a pH-responsive crosslinked material, specifically locust bean gum-grafted-poly(acrylamide-co-acrylic acid) [LBG-g-poly(AAm-co-AAc)], to enable sustained release of c-phycocyanin (C-Pc). Synthesized LBG-g-poly(AAm-co-AAc) was fine-tuned by adjusting various synthetic parameters, including the concentration of monomers, duration of reaction, and MW irradiation intensity, to maximize the yield of crosslinked LBG grafted product and enhance encapsulation efficiency of C-Pc. Following its synthesis, LBG-g-poly(AAm-co-AAc) was thoroughly characterized using advanced techniques, like XRD, TGA, FTIR, NMR, and SEM, to analyze its structural and chemical properties. Moreover, the study examined the in-vitro C-Pc release profile from LBG-g-poly(AAm-co-AAc) based hydrogel (HgCPcLBG). Findings revealed that the maximum release of C-Pc (64.12 ±â€¯2.69 %) was achieved at pH 7.4 over 48 h. Additionally, HgCPcLBG exhibited enhanced antioxidant performance and compatibility with blood. In vivo studies confirmed accelerated wound closure, and ELISA findings revealed reduced inflammatory markers (IL-6, IL-1ß, TNF-α) within treated skin tissue, suggesting a positive impact on injury repair. A low-cost and eco-friendly approach for creating LBG-g-poly(AAm-co-AAc) and HgCPcLBG has been developed. This method achieved sustained release of C-Pc, which could be a significant step forward in wound care technology.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38833068

RESUMO

A prolonged and compromised wound healing process poses a significant clinical challenge, necessitating innovative solutions. This research investigates the potential application of nanotechnology-based formulations, specifically nanofiber (NF) scaffolds, in addressing this issue. The study focuses on the development and characterization of multifunctional nanofibrous scaffolds (AZL-CS/PVA-NF) composed of azilsartan medoxomil (AZL) enriched chitosan/polyvinyl alcohol (CS/PVA) through electrospinning. The scaffolds underwent comprehensive characterization both in vitro and in vivo. The mean diameter and tensile strength of AZL-CS/PVA-NF were determined to be 240.42 ± 3.55 nm and 18.05 ± 1.18 MPa, respectively. A notable drug release rate of 93.86 ± 2.04%, was observed from AZL-CS/PVA-NF over 48 h at pH 7.4. Moreover, AZL-CS/PVA-NF exhibited potent antimicrobial efficacy for Staphylococcus aureus and Pseudomonas aeruginosa. The expression levels of Akt and CD31 were significantly elevated, while Stat3 showed a decrease, indicating a heightened tissue regeneration rate with AZL-CS/PVA-NF compared to other treatment groups. In vivo ELISA findings revealed reduced inflammatory markers (IL-6, IL-1ß, TNF-α) within treated skin tissue, implying a beneficial effect on injury repair. The comprehensive findings of the present endeavour underscore the superior wound healing activity of the developed AZL-CS/PVA-NF scaffolds in a Wistar rat full-thickness excision wound model. This indicates their potential as novel carriers for drugs and dressings in the field of wound care.

3.
Int J Pharm ; 654: 123975, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38452833

RESUMO

Targeted therapies enhance the efficacy of tumour screening and management while lowering side effects. Multiple tumours, including liver cancer, exhibit elevated levels of folate receptor expression. This research attempted to develop surface-functionalised bosutinib cubosomes against hepatocellular carcinoma. The novelty of this work is the anti-hepatic action of bosutinib (BST) and folic acid-modified bosutinib cubosomes (BSTMF) established through proto-oncogene tyrosine-protein kinase (SrC)/ focal adhesion kinase(FAK), reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and cell cytotoxicity. Later, the in-vivo pharmacokinetics of BSTMF were determined for the first time. The strong affinity of folic acid (FA) for folate receptors allows BSTMF to enter cells via FA receptor-mediated endocytosis. The particle size of the prepared BSTMF was 188.5 ± 2.25 nm, and its zeta potential was -20.19 ± 2.01 mV, an encapsulation efficiency of 90.31 ± 3.15 %, and a drug release rate of 76.70 ± 2.10 % for 48 h. The surface architecture of BSTMF was identified using transmission electron microscopy (TEM) and Atomic force microscopy (AFM). Cell-line studies demonstrated that BSTMF substantially lowered the viability of Hep G2 cells compared to BST and bosutinib-loaded cubosomes (BSTF). BSTMF demonstrated an elevated BST concentration in tumour tissue than in other organs and also displayed superior pharmacokinetics, implying that they hold potential against hepatic cancers. This is the first study to show that BSTMF may be effective against liver cancer by targeting folate receptors and triggering SrC/FAK-dependent apoptotic pathways. Multiple parameters demonstrated that BSTMF enhanced anticancer targeting, therapeutic efficacy, and safety in NDEA-induced hepatocellular carcinoma.


Assuntos
Compostos de Anilina , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Nitrilas , Quinolinas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Ácido Fólico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Linhagem Celular Tumoral , Tamanho da Partícula
4.
Int J Biol Macromol ; 263(Pt 2): 130517, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423444

RESUMO

Orally targeted delivery systems have attracted ample interest in colorectal cancer management. In this investigation, we developed Inositol hexaphosphate (IHP) loaded Tripolyphosphate (Tr) crosslinked Pectin (Pe) Chitosan (Ch) nanoparticles (IHP@Tr*Pe-Ch-NPs) and modified them with l-Carnitine (CE) (CE-IHP@Tr*Pe-Ch-NPs) to improve uptake in colon cells. The formulated CE-IHP@Tr*Pe-Ch-NPs displayed a monodisperse distribution with 219.3 ± 5.5 nm diameter and 30.17 mV surface charge. Cell-line studies revealed that CE-IHP@Tr*Pe-Ch-NPs exhibited excellent biocompatibility in J774.2 and decreased cell viability in DLD-1, HT-29, and MCF7 cell lines. More cell internalization was seen in HT-29 and MCF7 due to overexpression of the OCTN2 and ATB0,+ transporter (CE transporters) compared to DLD-1. The cell cycle profile, reactive oxygen species, apoptosis, and mitochondrial membrane potential assays were performed to explore the chemo-preventive mechanism of CE-IHP@Tr*Pe-Ch-NPs. Moreover, the in-silico docking studies revealed enhanced interactive behavior of CE-IHP@Tr*Pe-Ch-NPs, thereby proving their targeting ability. All the findings suggested that CE-IHP@Tr*Pe-Ch-NPs could be a promising drug delivery approach for colon cancer targeting.


Assuntos
Quitosana , Nanopartículas , Humanos , Ácido Fítico , Pectinas/farmacologia , Carnitina , Células MCF-7 , Colo , Portadores de Fármacos
5.
Curr Pharm Des ; 29(40): 3221-3239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37584354

RESUMO

Infected wounds that do not heal are a worldwide problem that is worsening, with more people dying and more money being spent on care. For any disease to be managed effectively, its root cause must be addressed. Effective wound care becomes a bigger problem when various traditional wound healing methods and products may not only fail to promote good healing. Still, it may also hinder the healing process, causing wounds to stay open longer. Progress in tissue regeneration has led to developing three-dimensional scaffolds (3D) or constructs that can be leveraged to facilitate cell growth and regeneration while preventing infection and accelerating wound healing. Tissue regeneration uses natural and fabricated biomaterials that encourage the growth of tissues or organs. Even though the clinical need is urgent, the demand for polymer-based therapeutic techniques for skin tissue abnormalities has grown quickly. Hydrogel scaffolds have become one of the most imperative 3D cross-linked scaffolds for tissue regeneration because they can hold water perfectly and are porous, biocompatible, biodegradable, and biomimetic. For damaged organs or tissues to heal well, the porosity topography of the natural extracellular matrix (ECM) should be imitated. This review details the scaffolds that heal wounds and helps skin tissue to develop. After a brief overview of the bioactive and drug-loaded polymeric hydrogels, the discussion moves on to how the scaffolds are made and what they are made of. It highlights the present uses of in vitro and in-vivo employed biomimetic scaffolds. The prospects of how well bioactiveloaded hydrogels heal wounds and how nanotechnology assists in healing and regeneration have been discussed.


Assuntos
Biomimética , Alicerces Teciduais , Humanos , Cicatrização , Polímeros/farmacologia , Hidrogéis/farmacologia
6.
RSC Med Chem ; 14(6): 1088-1100, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37360392

RESUMO

Photoactivatable protecting groups (PPGs) have become powerful materials for controlling the activity of biologically important molecules in the biomedical field. However, designing PPGs that can be efficiently activated by biologically benign visible and NIR light with fluorescence monitoring is still a great challenge. Herein, we report o-hydroxycinnamate-based PPGs that can be activated by both visible (one-photon) and NIR (two-photon) light for controlled drug release with real-time monitoring. Thus, a photoremovable 7-diethylamino o-hydroxycinnamate group is covalently attached to an anticancer drug, gemcitabine, to establish a photoactivatable prodrug system. Upon excitation by visible (400-700 nm) or NIR (800 nm) light, the prodrug efficiently releases drug which is quantified by monitoring the formation of a strongly fluorescent coumarin reporter. The prodrug is taken up by the cancer cells and interestingly accumulates within mitochondria as determined by FACS and fluorescence microscopy imaging. Further, the prodrug demonstrates photo-triggered, dose-dependent, and temporally controlled cell death upon irradiation with both visible and NIR light. This photoactivatable system could be useful and adapted in the future for the development of advanced therapies in biomedicine.

7.
Int J Pharm ; 639: 122937, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068717

RESUMO

Polysaccharide-based nanoparticles (NPs) such as pectin/ chitosan (PN/CN) had always been of greatest interest because of their excellent solubility, biocompatibility, and higher suitability for oral drug delivery. This study employed blending-crosslinking of polymers (PN&CN) followed by emulsification-solvent evaporation to prepare and compare two sets of PEGylated NPs to deliver phytic acid (IP6) to colon orally as it has potential to manage colon cancer but fails to reach colon when ingested in pure form. The first set was crosslinked with Glutaraldehyde (GE) (GE*PN-CN-NPs) while the second set was crosslinked with sodium tripolyphosphate (TPP) (TPP*PN-CN-NPs). IP6-loaded-GE/TPP*PN-CN-NPs were optimized using a central composite design. Developed TPP*PN-CN-NPs had a smaller size (210.6 ± 7.93 nm) than GE*PN-CN-NPs (557.2 ± 5.027 nm). Prepared NPs showed <12% IP6 release at pH 1.2 whereas >80% release was observed at pH 7.4. Further, NPs were explored for cytocompatibility in J774.2 cell lines, cytotoxicity, and cellular uptake in HT-29 and DLD-1 cell lines. While exhibiting substantial cytotoxicity and cellular uptake in HT-29 and DLD-1, the NPs were deemedsafe in J774.2. The PEGylated-TPP*PN-CN-NPs showed time-dependent uptake in J774.2 cell lines. Conclusively, the employed NP development method successfully delivered IP6 to colon and may also open avenues for the oral delivery of other drugs to colon.


Assuntos
Quitosana , Nanopartículas , Ácido Fítico , Pectinas , Colo , Polietilenoglicóis , Portadores de Fármacos
8.
J Microencapsul ; 40(4): 263-278, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36989347

RESUMO

The purpose of this study was to evaluate the drug delivery and therapeutic potential of berberine (Br) loaded nanoformulation in rheumatoid arthritis (RA)-induced animal model. The Br-loaded NLCs (nanostructured lipid carriers) were prepared employing melt-emulsification process, and optimised through Box-Behnken design. The prepared NLCs were assessed for in-vitro and in-vivo evaluations. The optimised NLCs exhibited a mean diameter of 180.2 ± 0.31 nm with 88.32 ± 2.43% entrapment efficiency. An enhanced anti-arthritic activity with reduced arthritic scores to 0.66 ± 0.51, reduction in ankle diameter to 5.80 ± 0.27 mm, decline in paw withdrawal timing, and improvements in walking behaviour were observed in the Br-NLCs treated group. The radiographic images revealed a reduction in bone and cartilage deformation. The Br-NLCs showed promising results in the management of RA disease, can be developed as an efficient delivery system at commercial levels, and may be explored for clinical application after suitable experiments in the future.


Assuntos
Artrite Reumatoide , Berberina , Nanoestruturas , Animais , Portadores de Fármacos/uso terapêutico , Berberina/farmacologia , Berberina/uso terapêutico , Sistemas de Liberação de Medicamentos , Artrite Reumatoide/tratamento farmacológico , Modelos Animais , Lipídeos , Tamanho da Partícula
9.
Drug Deliv Transl Res ; 13(2): 627-641, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35963927

RESUMO

Rheumatoid arthritis (RA) is a joint ailment with multi-factorial immune-mediated degenerative pathogenesis, including genetic and environmental defects. Resistance to disease-modifying anti-rheumatic drugs (DMARDs) happens due to excessive drug efflux over time, rendering the concentration insufficient to elicit a response. Thymoquinone (TQ) is a quinone-based phenolic compound with antioxidant and anti-inflammatory activities that downregulate numerous pro-inflammatory cytokines. However, its pharmaceutical importance and therapeutic utility are underexplored due to intrinsic physicochemical characteristics such as inadequate biological stability, short half-life, low hydrophilicity, and less systemic availability. Tamanu oil-stabilised nanostructured lipid carriers (TQ-NLCs) were prepared and optimised using Box-Behnken design (BBD) with the size of 153.9 ± 0.52 nm and surface charge of -30.71 mV. The % entrapment efficiency and drug content were found to be 84.6 ± 0.50% and 14.75 ± 0.52%, respectively. Furthermore, the TQ-loaded NLCs (TQ-NLCs) assayed for skin permeation for transdermal delivery which significantly (p < 0.05) increased skin enhancement ratio 14.6 times compared to the aqueous solution of TQ. Tamanu oil displayed the synergistic anti-inflammatory potential with TQ in comparison to pure TQ, as evidenced against carrageenan (CRG)-induced paw oedema model and Freund's adjuvant-induced arthritic model. The arthritic and X-ray scores significantly (p < 0.05) reduced in TQ-NLCs and standard formulation-treated groups. Moreover, serum pro-inflammatory marker TNF-α and IL-6 levels were also significantly (p < 0.05) reduced in TQ-NLCs gel-treated group compared to the arthritic control group.


Assuntos
Antirreumáticos , Artrite Reumatoide , Anti-Inflamatórios/farmacologia , Artrite Reumatoide/tratamento farmacológico , Regulação para Baixo , Portadores de Fármacos/química , Interleucina-6 , Quinonas/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Animais
10.
J Liposome Res ; 33(2): 154-169, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35930249

RESUMO

Some breast cancers are caused by hormonal imbalances, such as estrogen and progesterone. These hormones play a function in directing the growth of cancer cells. The hormone receptors in hormone receptor-positive breast cancer lead breast cells to proliferate out of control. Cancer therapy such as hormonal, targeted, radiation is still unsatisfactory because of these challenges namely multiple drug resistance (MDR), off-targeting, severe adverse effects. A novel aromatase inhibitor exemestane (Exe) exhibits promising therapy in breast cancer. This study aims to develop and optimize Exe-loaded lipid nanocapsules (LNCs) by using DSPC, PF68 and olive oil as lipid, surfactant and oil phase, respectively and to characterize the same. The prepared nanocapsules were investigated via in vitro cell culture and in vivo animal models. The LNCs exhibited cytotoxicity in MCF-7 cell lines and enhanced anti-cancer activity and reduced cardiotoxicity in DMBA-induced animal model when compared to the drug. Additionally, in vivo pharmacokinetics revealed a 4.2-fold increased oral bioavailability when compared with Exe suspension. This study demonstrated that oral administration of Exe-loaded LNCs holds promise for the antiestrogenic activity of exemestane in breast cancer.


Assuntos
Nanocápsulas , Neoplasias , Animais , Lipossomos , Androstadienos/farmacologia , Androstadienos/uso terapêutico , Lipídeos , Neoplasias/tratamento farmacológico
11.
Colloids Surf B Biointerfaces ; 218: 112763, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35994989

RESUMO

This study was designed to create surface-functionalized bosutinib liposomes that could be used for the management of estrogen-positive cancers. The novelty of this work was the anti-cancer activity of bosutinib-loaded liposomes (Bos-LPs) in estrogen-positive cancer via estrogen response elements, responsible for the malignancy of cancer cells. Biotin effectively delivers active moiety to tumor tissues because it interacts with the biotin receptor and operates through the Sodium-dependent multivitamin transporters (SMVT) transporter. The prepared liposomes had a 257.73 ± 4.50 nm particle size, - 28.07 ± 5.81 mV zeta potential, 87.78 ± 1.16 % encapsulation efficiency and 85.56 ± 0.95 % drug release for 48 h. The surface architecture of biotin-modified bosutinib-loaded liposomes (b-Bos-LPs) was confirmed using scanning electron and transmission electron microscopies. In-vitro experiments revealed that b-Bos-LPs outperformed Bos and Bos-LPs in terms of significantly reduced cell viability in MCF-7 cells. According to biodistribution and pharmacokinetic studies, b-Bos-LPs have a higher Bos concentration in tumor tissues as compared to the other organs and also possess better pharmacokinetic activity, indicating that they can be used to treat carcinogen-induced estrogen-positive cancers. This is the first study to show that b-Bos-LPs can display activity against estrogen-positive cancer via biotin targeting. As evidenced by various parameters, b-Bos-LPs showed improved anticancer targeting, therapeutic safety and efficacy in carcinogen-induced estrogen-positive cancer. The receptor protein estrogen, which is primarily responsible for this cancer was downregulated by b-Bos-LPs in an immunoblotting assay. The results showed that biotinylated distearoylphosphatidylcholine (DSPC) augmented LPs loaded with Bosutinib can cause apoptosis in estrogen-positive breast cancer and be an effective way to treat estrogen-positive cancer.


Assuntos
Compostos de Anilina , Neoplasias da Mama , Lipossomos , Nitrilas , Quinolinas , Compostos de Anilina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Estrogênios/metabolismo , Feminino , Humanos , Nitrilas/uso terapêutico , Tamanho da Partícula , Quinolinas/uso terapêutico
12.
Sci Rep ; 12(1): 8735, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610283

RESUMO

Salicylic acid phenylethyl ester (SAPE) was synthesized by Zn(OTf)2-catalyzed selective esterification of salicylic acid and phenylethyl alcohol and studied for its role as an immunomodulatory and anticancer agent. Low toxicity and favorable physical, Lipinski-type, and solubility properties were elucidated by ADME-tox studies. Molecular docking of SAPE against COX-2 revealed favorable MolDockscore, rerank score, interaction energy, internal pose energy, and hydrogen bonding as compared to ibuprofen and indomethacin. An average RMSD of ~ 0.13 nm for the docked complex with stable dynamic equilibrium condition was noted during the 20 ns MD simulation. A low band gap predicting a strong binding affinity at the enzyme's active site was further predicted by DFT analysis. The ester caused a reduction in the percentage of erythrocyte hemolysis and was shown to be non-cytotoxic against human lymphocytes, CaCo-2, and HepG-2 cells by the MTT assay. Moreover, it's in vitro efficacy in inhibiting COX-2 enzyme under both LPS stimulated intestinal cells and direct sequestration assays was found to be higher than salicylic acid and indomethacin. The anticancer activity of SAPE was tested on the breast cancer cell line MCF-7, and potential efficacy was exhibited in terms of decreased cell viability. Flow cytometry analysis exhibited the arrest of the cell cycle at G1/G0 and S phases, during which induction of autophagic vesicle formation and decrease in mitochondrial membrane potential was observed owing to increased ROS production. Furthermore, at these phases, the onset of apoptosis along with DNA damage was also observed. Pre-treatment with SAPE in colitis-induced Wistar rats displayed low disease activity index and reduction in the extent of intestinal tissue disruption and lipid peroxidation. A marked increase of anti-oxidative enzymes viz., catalase, GGT, and GST, and a decrease of pro-inflammatory cytokines IL-6 and TNF-α in the intestinal tissue extracts of the treated groups was noted. The results of this study have sufficient credence to support that the synthesised ester (SAPE) be considered as an anti-oxidative and anti-inflammatory compound with therapeutic potential for the effective management of cancer.


Assuntos
Antineoplásicos , Apoptose , Animais , Antineoplásicos/química , Células CACO-2 , Ciclo-Oxigenase 2/farmacologia , Ésteres/farmacologia , Humanos , Indometacina/farmacologia , Simulação de Acoplamento Molecular , Ratos , Ratos Wistar , Ácido Salicílico/farmacologia
13.
Curr Pharm Des ; 28(2): 78-90, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34348616

RESUMO

Nanoparticles (NPs) as nanocarriers have emerged as novel and promising theranostic agents. The term theranostics revealed the properties of NPs capable of diagnosing the disease at an early stage and/or treating the disease. Such NPs are usually developed employing a surface engineering approach. The theranostic agents comprise NPs loaded with a drug/diagnostic agent that delivers it precisely to the target site. Theranostics is a field with promising results in enhancing therapeutic efficacy facilitated through higher payload at the targeted tissue, reduced dose, and dose-dependent side effects. However, controversies in terms of toxicity and size-dependent properties have often surfaced for NPs. Thus, a stringent in-vitro and in-vivo evaluation is required to develop safe and non-toxic NPs as theranostic agents. The review also focuses on the various entry points of NPs in the human system and their outcomes, including toxicity. It elaborates the evaluation criteria to ensure the safe use of NPs for diagnostic and therapeutic purposes.


Assuntos
Nanopartículas , Nanoestruturas , Humanos , Nanopartículas/uso terapêutico , Medicina de Precisão , Nanomedicina Teranóstica/métodos
14.
J Med Chem ; 64(24): 17813-17823, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34886661

RESUMO

The current anticancer therapies are limited by their lack of controlled spatiotemporal release at the target site of action. We report a novel drug delivery platform that provides on-demand, real-time, organelle-specific drug release and monitoring upon photoactivation. The system is comprised of a model anticancer drug doxorubicin, an alkyltriphenylphosphonium moiety to target mitochondria in cancer cells, and a hydroxycinnamate photoactivatable linker that is covalently attached to the drug and mitochondria-targeting moieties such that it can be phototriggered by either UV (one-photon) or NIR (two-photon) light to form a fluorescent coumarin product and facilitate the release of drug payload. The extent of drug release is quantified by the fluorescence intensity of the coumarin formed. Further, the photoactivatable prodrug accumulates in the mitochondria and shows light-triggered temporally controlled cell death. In the future, our platform can be tuned for any biological application of interest, offering immense value in biomedicine.


Assuntos
Sistemas de Liberação de Medicamentos , Raios Infravermelhos , Mitocôndrias/efeitos dos fármacos , Raios Ultravioleta , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacocinética , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Liberação Controlada de Fármacos , Células HeLa , Humanos , Mitocôndrias/metabolismo , Frações Subcelulares/metabolismo
15.
Inorg Chem ; 60(17): 12644-12650, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34392682

RESUMO

Designing a metal catalyst that addresses the major issues of solubility, stability, toxicity, cell uptake, and reactivity within complex biological milieu for bioorthogonal controlled transformation reactions is a highly formidable challenge. Herein, we report an organoiridium complex that is nontoxic and capable of the uncaging of allyloxycarbonyl-protected amines under biologically relevant conditions and within living cells. The potential applications of this uncaging chemistry have been demonstrated by the generation of diagnostic and therapeutic agents upon the activation of profluorophore and prodrug in a controlled fashion within HeLa cells, providing a valuable tool for numerous potential biological and therapeutic applications.


Assuntos
Carbamatos/farmacologia , Complexos de Coordenação/farmacologia , Pró-Fármacos/farmacologia , Carbamatos/síntese química , Catálise , Complexos de Coordenação/síntese química , Doxorrubicina/síntese química , Doxorrubicina/farmacologia , Células HeLa , Humanos , Irídio/química , Pró-Fármacos/síntese química , Rodaminas/síntese química , Rodaminas/farmacologia
16.
Int J Biol Macromol ; 182: 1218-1228, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33991556

RESUMO

The present work aims to synthesize the pH-sensitive crosslinked guar gum-g-poly(acrylic acid-co-acrylonitrile) [guar-g-(AA-co-ACN)] via microwave-assisted technique for the sustained release of thymoquinone. The synthesized material [guar-g-(AA-co-ACN)] was optimized by varying synthetic parameters viz. monomer concentration, reaction time, and microwave power to obtain the maximum yield of the crosslinked guar gum grafted product as well as maximum encapsulation of thymoquinone. The synthesized material [guar-g-poly(AA-co-ACN)] was characterized by FT-IR, SEM, XRD, NMR, zeta potential, and thermal techniques. This synthesized material was used to encapsulate thymoquinone (TQ) for effective nanotherapeutic delivery. In-vitro thymoquinone release behavior of guar-g-poly(AA-co-ACN) based nanoparticles (NpTGG) was investigated. The maximum thymoquinone release (78%) was achieved at pH 7.4 and time (6 h). The NpTGG also exhibited better antioxidant activity and hemocompatibility as compared to thymoquinone. Cytotoxicity of uar-g-(AA-co-ACN) and NpTGG was also evaluated against the human kidney VERO cell line and found to be nontoxic. Current research provides a cost-effective and green approach for the synthesis of guar-g-(AA-co-ACN) and NpTGG for sustained release of thymoquinone.


Assuntos
Antioxidantes/metabolismo , Benzoquinonas/química , Galactanos/química , Inflamação/tratamento farmacológico , Mananas/química , Gomas Vegetais/química , Materiais Biocompatíveis , Humanos , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier
17.
Biotechnol Rep (Amst) ; 30: e00612, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33996520

RESUMO

With the advancement of nanotechnology, the nano-sized particles make an imprint on our daily lives.The present investigation revealed that biomolecules present in seed exudates of Vigna radiata are responsible for the synthesis of AuNPs, confirmed by the routine characterization techniques. Anticancer efficacy showed by AuNPs might be due to the release of phytochemicals in the exudate which is being adsorbed on the surface of AuNPs referencing their anticancer efficacy against the tested breast cancer cell lines. Inhibition of clonogenicity and cell cycle arrest at G2/M phase then apoptosis of AuNPs was also observed, but found nontoxic to the human PBMC cells which further confirms its biocompatible property Among the various physicochemical study, present AuNPs shows unique information, they show photoluminescent property which may be used for bioimaging purposes. However, further molecular analysis needs to be explored to understand the underlying mechanism for therapeutic and biomedical application.

18.
SN Compr Clin Med ; 2(11): 2067-2076, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015546

RESUMO

The pandemic of coronavirus infection 2019 (COVID-19) due to the serious respiratory condition created by the coronavirus 2 (SARS-CoV-2) presents a challenge to recognize effective strategies for management and treatment. In general, COVID-19 is an acute disease that can also be fatal, with an ongoing 10.2% case morbidity rate. Extreme illness may bring about death because of enormous alveolar damage and hemorrhage along with progressive respiratory failure. The rapidly expanding information with respect to SARS-CoV-2 research suggests a substantial number of potential drug targets. The most encouraging treatment to date is suggested to be with the help of remdesivir, hydroxychloroquine, and many such repurposed drugs. Remdesivir has a strong in vitro activity for SARS-CoV-2, yet it is not the drug of choice as affirmed by the US Food and Drug Administration and presently is being tried in progressing randomized preliminaries. The COVID-19 pandemic has been the worst worldwide general health emergency of this age and, possibly, since the pandemic influenza outbreak of 1918. The speed and volume of clinical preliminaries propelled to examine potential treatments for COVID-19 feature both the need and capacity to create abundant evidence even in the center of a pandemic. No treatments have been demonstrated as accurate and dependable to date. This review presents a concise precise of the targets and broad treatment strategies for the benefit of researchers.

19.
Environ Sci Pollut Res Int ; 27(35): 43582-43598, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32951168

RESUMO

Toxicity due to heavy metals (HM), specifically mercury (Hg), arsenic (As), lead (Pb), and cadmium (Cd) remains a challenge to scientists till date. This review gives insights into natural antidotes for the management and prevention of HM toxicity. Various databases such as PubMed, Embase, and Science Direct were searched for available facts on natural antidotes and their commercial products against HM toxicity till date. Toxicity owing to such metals needs prevention rather than therapy. Natural antidotes, fruits and vegetables, rich in antioxidant are the answers to such toxicities. Synthetic chelators impart a major drawback of removing essential metals required for normal body function, along with the toxic one. Natural antioxidants are bestowed with scavenging and chelation properties and can be alternative for synthetic chelating agents. Natural compounds are abundantly available, economic, and have minimal side effects when compared with classical chelators. Prevention is better than cure and thus adding plentiful vegetables and fruits to our diet can combat HM toxicity-related illness. Graphical abstract.


Assuntos
Arsênio , Metais Pesados , Antídotos , Cádmio , Quelantes , Intoxicação por Metais Pesados , Humanos
20.
Toxicol Rep ; 7: 492-500, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32309148

RESUMO

Zinc oxide nanoparticles (ZNP) are being used in various fields viz cosmetics industry as UV protectants, in the food packaging industry due to their anti-bacterial properties, in agriculture as micronutrients, etc. Increased applications of ZNPs in our day to day life, leading to the contamination of the surrounding environment posing a direct or indirect health risk. Various reports suggest that fruits and vegetables are a rich source of phytochemicals having antioxidant properties which help in neutralizing ROS generated on metal toxicity of the body. The present study focuses to study the ameliorative effect of apple (Pyrus malus) extract (E) on ZNP induced toxicity. Therefore, animals were grouped, six in each, exposed to various doses of ZNP (50 and 250 mg/kg), ZNP (50 and 250 mg/kg)+E. The studied parameters was: food intake, water intake, antioxidants assay, zinc accumulation, and histological alterations and was compared to control. Investigation revealed that ZNP induces toxicity as revealed by the alteration in the studied parameter, whereas those exposed to ZNP along with Pyrus malus fruit extract try to reduce the toxicity induced by nanoparticles but at low doses only. This ameliorative effect of fruit extract might be due to the presence of antioxidants scavenging the free radicals generated by ZNPs suggesting that antioxidant-rich fruit may have a protective role and have the potential to reduce the nanoparticles mediated oxidative stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...