Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(8): 9063-9075, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38434848

RESUMO

High-performance natural materials with superior mechanical properties often possess a hierarchical structure across multiple length scales. Nacre, also known as the mother of pearl, is an example of such a material and exhibits remarkable strength and toughness. The layered hierarchical architecture across different length scales is responsible for the efficient toughness and energy dissipation. To develop high-performance artificial nacre-like composites, it is necessary to mimic this layered structure and understand the molecular phenomena at the interface. This study uses coarse-grained molecular dynamics simulations to investigate the structure-property relationship of stacked graphene-polyethylene (PE) nanocomposites. Uniaxial and oscillatory shear deformation simulations were conducted to explore the composites' mechanical and viscoelastic behavior. The effect of grafting on the glass-transition temperature and the mechanical and viscoelastic behavior was also examined. The two examined microstructures, the stacked and grafted GnP (graphene nanoplatelet)-PE composites, demonstrated significant enhancement in the Young's modulus and yield strength when compared to the pristine PE. The study also delves into the viscoelastic properties of polyethylene nanocomposites containing graphene and graphene oxide. The grafted composite demonstrated an increased elastic energy and improved capacity for stress transfer. Our study sheds light on the energy dissipation properties of layered nanocomposites through underlying molecular mechanisms, providing promising prospects for designing novel biomimetic polymer nanocomposites.

2.
Nanomaterials (Basel) ; 12(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36234462

RESUMO

Organisms hold an extraordinarily evolutionary advantage in forming complex, hierarchical structures across different length scales that exhibit superior mechanical properties. Mimicking these structures for synthesizing high-performance materials has long held a fascination and has seen rapid growth in the recent past thanks to high-resolution microscopy, design, synthesis, and testing methodologies. Among the class of natural materials, nacre, found in mollusk shells, exhibits remarkably high mechanical strength and toughness. The highly organized "brick and mortar" structure at different length scales is a basis for excellent mechanical properties and the capability to dissipate energy and propagation in nacre. Here, we employ large-scale atomistic coarse-grained molecular dynamics simulations to study the mechanical and viscoelastic behavior of nacre-like microstructures. Uniaxial tension and oscillatory shear simulations were performed to gain insight into the role of complex structure-property relationships. Specifically, the role played by the effect of microstructure (arrangement of the crystalline domain) and polymer-crystal interactions on the mechanical and viscoelastic behavior is elucidated. The tensile property of the nanocomposite was seen to be sensitive to the microstructure, with a staggered arrangement of the crystalline tablets giving rise to a 20-30% higher modulus and lower tensile strength compared to a columnar arrangement. Importantly, the staggered microstructure is shown to have a highly tunable mechanical behavior with respect to the polymer-crystal interactions. The underlying reasons for the mechanical behavior are explained by showing the effect of polymer chain mobility and orientation and the load-carrying capacity for the constituents. Viscoelastic responses in terms of the storage and loss moduli and loss tangent are studied over three decades in frequency and again highlight the differences brought about by the microstructure. We show that our coarse-grained models offer promising insights into the design of novel biomimetic structures for structural applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...