Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39190920

RESUMO

Proximity-enhanced chemical cross-linking is an invaluable tool for probing protein-protein interactions and enhancing the potency of potential peptide and protein drugs. Here, we extend this approach to covalently stabilize large macromolecular assemblies. We used SuFEx chemistry to covalently stabilize an 18-subunit pore-forming complex, CsgG:CsgF, consisting of nine CsgG membrane protein subunits that noncovalently associate with nine CsgF peptides. Derivatives of the CsgG:CsgF pore have been used for DNA sequencing, which places high demands on the structural stability and homogeneity of the complex. To increase the robustness of the pore, we designed and synthesized derivatives of CsgF-bearing sulfonyl fluorides, which react with CsgG in very high yield to form a covalently stabilized CsgG:CsgF complex. The resulting pores formed highly homogeneous channels when added to artificial membranes. The high yield and rapid reaction rate of the SuFEx reaction prompted molecular dynamics simulations, which revealed that the SO2F groups in the initially formed complex are poised for nucleophilic reaction with a targeted Tyr. These results demonstrate the utility of SuFEx chemistry to structurally stabilize very large (here, 280 kDa) assemblies.

2.
Cell Stem Cell ; 31(7): 1038-1057.e11, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38733993

RESUMO

Enteroendocrine cells (EECs) secrete serotonin (enterochromaffin [EC] cells) or specific peptide hormones (non-EC cells) that serve vital metabolic functions. The basis for terminal EEC diversity remains obscure. By forcing activity of the transcription factor (TF) NEUROG3 in 2D cultures of human intestinal stem cells, we replicated physiologic EEC differentiation and examined transcriptional and cis-regulatory dynamics that culminate in discrete cell types. Abundant EEC precursors expressed stage-specific genes and TFs. Before expressing pre-terminal NEUROD1, post-mitotic precursors oscillated between transcriptionally distinct ASCL1+ and HES6hi cell states. Loss of either factor accelerated EEC differentiation substantially and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and non-EC cell features. These TFs mainly bind cis-elements that are accessible in undifferentiated stem cells, and they tailor subsequent expression of TF combinations that underlie discrete EEC identities. Thus, early TF oscillations retard EEC maturation to enable accurate diversity within a medically important cell lineage.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Diferenciação Celular , Células Enteroendócrinas , Fatores de Transcrição , Humanos , Células Enteroendócrinas/metabolismo , Células Enteroendócrinas/citologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Linhagem da Célula
3.
Foods ; 13(10)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38790890

RESUMO

The shelf life of whole wheat bread (WWB) significantly impacts its freshness and overall quality. This research investigated the impact of chitosan lactate (CL) on various characteristics influencing the shelf life of WWB, including its physical, chemical, textural, antimicrobial, and sensory attributes. These characteristics were evaluated by conducting various experiments such as physical inspection, moisture, impedance, swelling, color, texture, FTIR, microbiological, and sensory analysis. CL with different concentrations was incorporated into WWB formulations: P0.0 (0.0% w/w CL, control), P0.5 (0.5% w/w CL), P1.0 (1.0% w/w CL), P2.0 (2.0% w/w CL), and P3.0 (3.0% w/w CL). The inclusion of CL promoted the Maillard reaction (MR) compared to P0.0. The promotion of MR resulted in the formation of a shinier crust, which increased as the CL content was increased. P0.5 comprised large-sized pores and exhibited increased loaf height. CL-containing WWB formulations showed an increased moisture content and decreased impedance values compared to the control. FTIR analysis of P0.5 demonstrated the enhanced interaction and bonding of water molecules. P0.5 demonstrated optimal textural, colorimetric, and antimicrobial properties compared to other formulations. The sensory attributes of WWBs remain unchanged despite CL addition. In conclusion, P0.5 exhibited optimal characteristics associated with better quality and prolonged shelf life.

4.
Nat Commun ; 15(1): 3595, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678016

RESUMO

Plasticity among cell lineages is a fundamental, but poorly understood, property of regenerative tissues. In the gut tube, the small intestine absorbs nutrients, whereas the colon absorbs electrolytes. In a striking display of inherent plasticity, adult colonic mucosa lacking the chromatin factor SATB2 is converted to small intestine. Using proteomics and CRISPR-Cas9 screening, we identify MTA2 as a crucial component of the molecular machinery that, together with SATB2, restrains colonic plasticity. MTA2 loss in the adult mouse colon activated lipid absorptive genes and functional lipid uptake. Mechanistically, MTA2 co-occupies DNA with HNF4A, an activating pan-intestinal transcription factor (TF), on colonic chromatin. MTA2 loss leads to HNF4A release from colonic chromatin, and accumulation on small intestinal chromatin. SATB2 similarly restrains colonic plasticity through an HNF4A-dependent mechanism. Our study provides a generalizable model of lineage plasticity in which broadly-expressed TFs are retained on tissue-specific enhancers to maintain cell identity and prevent activation of alternative lineages, and their release unleashes plasticity.


Assuntos
Cromatina , Colo , Fator 4 Nuclear de Hepatócito , Intestino Delgado , Proteínas de Ligação à Região de Interação com a Matriz , Animais , Fator 4 Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Intestino Delgado/metabolismo , Colo/metabolismo , Camundongos , Cromatina/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Humanos , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Plasticidade Celular/genética , Linhagem da Célula , Camundongos Knockout
5.
J Mol Recognit ; 37(3): e3076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366770

RESUMO

Tetramethrin (TMT) is a commonly used insecticide and has a carcinogenic and neurodegenerative effect on humans. The binding mechanism and toxicological implications of TMT to human serum albumin (HSA) were examined in this study employing a combination of biophysical and computational methods indicating moderate binding affinity and potential hepato and renal toxicity. Fluorescence quenching experiments showed that TMT binds to HSA with a moderate affinity, and the binding process was spontaneous and predominantly enthalpy-driven. Circular dichroism spectroscopy revealed that TMT binding did not induce any significant conformational changes in HSA, resulting in no changes in its alpha-helix content. The binding site and modalities of TMT interactions with HSA as computed by molecular docking and molecular dynamics simulations revealed that it binds to Sudlow site II of HSA via hydrophobic interactions through its dimethylcyclopropane carboxylate methyl propanyl group. The structural dynamics of TMT induce proper fit into the binding site creating increased and stabilizing interactions. Additionally, molecular mechanics-Poisson Boltzmann surface area calculations also indicated that non-polar and van der Waals were found to be the major contributors to the high binding free energy of the complex. Quantum mechanics (QM) revealed the conformational energies of the binding confirmation and the degree of deviation from the global minimum energy conformation of TMT. The results of this study provide a comprehensive understanding of the binding mechanism of TMT with HSA, which is important for evaluating the toxicity of this insecticide in humans.


Assuntos
Inseticidas , Piretrinas , Humanos , Ligação Proteica , Simulação de Acoplamento Molecular , Inseticidas/toxicidade , Espectrometria de Fluorescência , Albumina Sérica Humana/química , Sítios de Ligação , Termodinâmica , Dicroísmo Circular
6.
bioRxiv ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38260422

RESUMO

Enteroendocrine cells (EECs), which secrete serotonin (enterochromaffin cells, EC) or a dominant peptide hormone, serve vital physiologic functions. As with any adult human lineage, the basis for terminal cell diversity remains obscure. We replicated human EEC differentiation in vitro , mapped transcriptional and chromatin dynamics that culminate in discrete cell types, and studied abundant EEC precursors expressing selected transcription factors (TFs) and gene programs. Before expressing the pre-terminal factor NEUROD1, non-replicating precursors oscillated between epigenetically similar but transcriptionally distinct ASCL1 + and HES6 hi cell states. Loss of either factor substantially accelerated EEC differentiation and disrupted EEC individuality; ASCL1 or NEUROD1 deficiency had opposing consequences on EC and hormone-producing cell features. Expressed late in EEC differentiation, the latter TFs mainly bind cis -elements that are accessible in undifferentiated stem cells and tailor the subsequent expression of TF combinations that specify EEC types. Thus, TF oscillations retard EEC maturation to enable accurate EEC diversification.

7.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38117103

RESUMO

The World Health Organization in 2022 reported that more than 863 million people in 50 countries are at risk of developing lymphatic filariasis (LF), a disease caused by parasitic infection. Immune responses to parasites suggest that the development of a prophylactic vaccine against LF is possible. Using a reverse vaccinology approach, the current study identified Trehalose-6-phosphatase (TPP) as a potential vaccine candidate among 15 reported vaccine antigens for B. malayi. High-ranking B and T-cell epitopes in the Trehalose-6-phosphatase (TPP) were shortlisted using online servers for subsequent analysis. We selected these peptides to construct a vaccine model using I-TASSER and GalaxyRefine server. The vaccine construct showed favorable physicochemical properties, high antigenicity, no allergenicity, no toxicity, and high stability. Structural validation using the Ramachandran plot showed that 98% of the residues were in favorable or mostly allowed regions. Molecular docking and simulation showed a strong binding affinity and stability of the subunit vaccine with toll-like receptor 4 (TLR4). Furthermore, the subunit vaccine showed a strong IgG/IgM response, with the disappearance of the antigen. We propose that our vaccine construct should be further evaluated using cellular and animal models to develop a vaccine that is safe and effective against LF.Communicated by Ramaswamy H. Sarma.

8.
Hemoglobin ; 47(5): 181-190, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37947120

RESUMO

Thalassemia is a major public health concern in India. The thalassemic burden in India is high, with an estimated 100,000 patients diagnosed with ß-thalassemia syndrome. However, the exact number is unknown because of the absence of National Registries for patients. India alone contributes to approximately 25% of the global ß-thalassemia burden. A possible option to control this burden is to endorse education and awareness programs, compulsory prenatal screening, and develop suitable facilities for genetic counseling, and availability of cost-effective diagnostic tests in India, especially in rural areas. In addition to the various clinical complications associated with thalassemia, lifelong intervention creates mental and physical trauma in patients and their relatives. Government and nongovernment organizations have initiated screening programs to prevent thalassemia. However, prenatal screening is not mandatory, and the reachability of screening programs in rural areas is yet to begin. This review article will discuss the progress in thalassemia research in India, including its prevalence, spectrum of ß-thalassemia mutations, preventive and therapeutic measures, and awareness programs. More importantly, we will discuss the need and roadmap to strengthen prevention programs in India.


Assuntos
Talassemia , Talassemia beta , Gravidez , Feminino , Humanos , Talassemia beta/diagnóstico , Talassemia beta/epidemiologia , Talassemia beta/genética , Diagnóstico Pré-Natal , Talassemia/diagnóstico , Aconselhamento Genético , Índia/epidemiologia
9.
Cureus ; 15(7): e42014, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37593293

RESUMO

Given the recent outbreaks of the Marburg (MARV) virus within the first quarter of the year 2023, interest in the MARV virus has been re-ignited given its shared phylogeny with the dreadful Ebola virus. This relation gives some insight into its virulence, associated morbidities, and mortality rates. The first outbreak of MARV recorded was in Germany, in 1967, of which seven died out of 31 reported cases. Ever since, subsequent cases have been reported all over Africa, a continent replete with failing healthcare systems.  This reality impresses a need for a contemporary and concise revision of the MARV virus existing publications especially in the areas of vaccine research. A functional MARV vaccine will serve as a panacea to ailing communities within the African healthcare landscape.  The objective of this scoping review is to provide pertinent information relating to MARV vaccine research beginning with an outline of MARV's pathology and pathogenesis in addition to the related morbidities, existing therapies, established outbreak protocols as well as areas of opportunities.

10.
Development ; 150(13)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37272420

RESUMO

The vertebrate appendage comprises three primary segments, the stylopod, zeugopod and autopod, each separated by joints. The molecular mechanisms governing the specification of joint sites, which define segment lengths and thereby limb architecture, remain largely unknown. Existing literature suggests that reciprocal gradients of retinoic acid (RA) and fibroblast growth factor (FGF) signaling define the expression domains of the putative segment markers Meis1, Hoxa11 and Hoxa13. Barx1 is expressed in the presumptive joint sites. Our data demonstrate that RA-FGF signaling gradients define the expression domain of Barx1 in the first presumptive joint site. When misexpressed, Barx1 induces ectopic interzone-like structures, and its loss of function partially blocks interzone development. Simultaneous perturbations of RA-FGF signaling gradients result in predictable shifts of Barx1 expression domains along the proximo-distal axis and, consequently, in the formation of repositioned joints. Our data suggest that during early limb bud development in chick, Meis1 and Hoxa11 expression domains are overlapping, whereas the Barx1 expression domain resides within the Hoxa11 expression domain. However, once the interzone is formed, the expression domains are refined and the Barx1 expression domain becomes congruent with the border of these two putative segment markers.


Assuntos
Articulações , Fatores de Transcrição , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Articulações/metabolismo , Proteína Meis1/genética , Proteína Meis1/metabolismo , Vertebrados/genética , Vertebrados/metabolismo , Extremidades , Regulação da Expressão Gênica no Desenvolvimento
11.
Genes Dev ; 36(11-12): 684-698, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35738677

RESUMO

The progeny of intestinal stem cells (ISCs) dedifferentiate in response to ISC attrition. The precise cell sources, transitional states, and chromatin remodeling behind this activity remain unclear. In the skin, stem cell recovery after injury preserves an epigenetic memory of the damage response; whether similar memories arise and persist in regenerated ISCs is not known. We addressed these questions by examining gene activity and open chromatin at the resolution of single Neurog3-labeled mouse intestinal crypt cells, hence deconstructing forward and reverse differentiation of the intestinal secretory (Sec) lineage. We show that goblet, Paneth, and enteroendocrine cells arise by multilineage priming in common precursors, followed by selective access at thousands of cell-restricted cis-elements. Selective ablation of the ISC compartment elicits speedy reversal of chromatin and transcriptional features in large fractions of precursor and mature crypt Sec cells without obligate cell cycle re-entry. ISC programs decay and reappear along a cellular continuum lacking discernible discrete interim states. In the absence of gross tissue damage, Sec cells simply reverse their forward trajectories, without invoking developmental or other extrinsic programs, and starting chromatin identities are effectively erased. These findings identify strikingly plastic molecular frameworks in assembly and regeneration of a self-renewing tissue.


Assuntos
Cromatina , Células-Tronco , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Diferenciação Celular/genética , Cromatina/metabolismo , Mucosa Intestinal/metabolismo , Intestinos , Camundongos , Proteínas do Tecido Nervoso/metabolismo
12.
Cell Stem Cell ; 29(1): 101-115.e10, 2022 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-34582804

RESUMO

Adult stem cells maintain regenerative tissue structure and function by producing tissue-specific progeny, but the factors that preserve their tissue identities are not well understood. The small and large intestines differ markedly in cell composition and function, reflecting their distinct stem cell populations. Here we show that SATB2, a colon-restricted chromatin factor, singularly preserves LGR5+ adult colonic stem cell and epithelial identity in mice and humans. Satb2 loss in adult mice leads to stable conversion of colonic stem cells into small intestine ileal-like stem cells and replacement of the colonic mucosa with one that resembles the ileum. Conversely, SATB2 confers colonic properties on the mouse ileum. Human colonic organoids also adopt ileal characteristics upon SATB2 loss. SATB2 regulates colonic identity in part by modulating enhancer binding of the intestinal transcription factors CDX2 and HNF4A. Our study uncovers a conserved core regulator of colonic stem cells able to mediate cross-tissue plasticity in mature intestines.


Assuntos
Colo , Íleo , Animais , Mucosa Intestinal , Camundongos , Organoides , Células-Tronco
13.
Gastroenterology ; 161(3): 924-939.e11, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34090884

RESUMO

BACKGROUND & AIMS: Tissue metaplasia is uncommon in adults because established cis-element programs resist rewiring. In Barrett's esophagus, the distal esophageal mucosa acquires a predominantly intestinal character, with notable gastric features, and is predisposed to developing invasive cancers. We sought to understand the chromatin underpinnings of Barrett's metaplasia and why it commonly displays simultaneous gastric and intestinal properties. METHODS: We profiled cis-regulatory elements with active histone modifications in primary human biopsy materials using chromatin immunoprecipitation followed by DNA sequencing. Mutations in Barrett's esophagus were examined in relation to tissue-specific enhancer landscapes using a random forest machine-learning algorithm. We also profiled open chromatin at single-cell resolution in primary Barrett's biopsy specimens using the assay for transposase-accessible chromatin. We used 1- and 2-color immunohistochemistry to examine protein expression of tissue-restricted genes. RESULTS: Barrett's esophagus bears epigenome fingerprints of human stomach and intestinal columnar, but not esophageal squamous, epithelia. Mutational patterns were best explained as arising on the epigenome background of active gastric cis-elements, supporting the view that adjoining stomach epithelium is a likely tissue source. Individual cells in Barrett's metaplasia coexpress gastric and intestinal genes, reflecting concomitant chromatin access at enhancers ordinarily restricted to one or the other epithelium. Protein expression of stomach-specific mucins; CLDN18; and a novel gastric marker, ANXA10, showed extensive tissue and subclonal heterogeneity of dual stomach-intestinal cell states. CONCLUSIONS: These findings reveal mixed and dynamic tissue-restricted chromatin states and phenotypic heterogeneity in Barrett's esophagus. Pervasive intragland variation argues against stem-cell governance of this phenotype.


Assuntos
Esôfago de Barrett/genética , Esôfago de Barrett/patologia , Plasticidade Celular , Montagem e Desmontagem da Cromatina , Epigenoma , Mucosa Esofágica/patologia , Células-Tronco/patologia , Linhagem da Célula , Sequenciamento de Cromatina por Imunoprecipitação , Análise Mutacional de DNA , Elementos Facilitadores Genéticos , Epigenômica , Predisposição Genética para Doença , Humanos , Imuno-Histoquímica , Metaplasia , Mutação , Fenótipo , Análise de Célula Única
14.
Artigo em Inglês | MEDLINE | ID: mdl-32142452

RESUMO

This paper presents a novel Electrocardiogram (ECG) denoising approach based on the generative adversarial network (GAN). Noise is often associated with the ECG signal recording process. Denoising is central to most of the ECG signal processing tasks. The current ECG denoising techniques are based on the time domain signal decomposition methods. These methods use some kind of thresholding and filtering approaches. In our proposed technique, convolutional neural network (CNN) based GAN model is effectively trained for ECG noise filtering. In contrast to existing techniques, we performed end-to-end GAN model training using the clean and noisy ECG signals. MIT-BIH Arrhythmia database is used for all the qualitative and quantitative analyses. The improved ECG denoising performance open the door for further exploration of GAN based ECG denoising approach.


Assuntos
Eletrocardiografia/métodos , Redes Neurais de Computação , Processamento de Sinais Assistido por Computador , Algoritmos , Arritmias Cardíacas/diagnóstico , Bases de Dados Factuais , Humanos , Aprendizado de Máquina
15.
Phys Eng Sci Med ; 43(4): 1387-1398, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33231858

RESUMO

Heartbeat classification is central to the detection of the arrhythmia. For the effective heartbeat classification, the noise-robust features are very significant. In this work, we have proposed a noise-robust support vector machine (SVM) based heartbeat classifier. The proposed classifier utilizes a novel noise-robust morphological feature which is based on the conditional spectral moment (CSM) of the heartbeat. In addition to the proposed CSM feature, we have also employed the existing RR interval, the wavelets, and the higher-order statistics (HOS) based temporal and morphological feature sets. The noise-robustness test of the proposed CSM and all the studied feature sets is performed for the SVM based heartbeat classifier. Further, we have studied the significance of combining these temporal and morphological features on the final classification performance. For this purpose, the individual SVMs were trained for each of the feature set. The final classification is based on the ensemble of these individual SVMs. Various combining scheme such as sum, majority, and product rules are employed to ensemble the result of the individually trained SVMs. The experimental results show the noise-robustness of the proposed CSM feature. The proposed classifier gives improved overall performance compared to the existing heartbeat classification systems.


Assuntos
Arritmias Cardíacas , Máquina de Vetores de Suporte , Arritmias Cardíacas/diagnóstico , Frequência Cardíaca , Humanos
16.
Nat Biotechnol ; 38(12): 1415-1420, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32632300

RESUMO

Single-molecule long-read DNA sequencing with biological nanopores is fast and high-throughput but suffers reduced accuracy in homonucleotide stretches. We now combine the CsgG nanopore with the 35-residue N-terminal region of its extracellular interaction partner CsgF to produce a dual-constriction pore with improved signal and base-calling accuracy for homopolymer regions. The electron cryo-microscopy structure of CsgG in complex with full-length CsgF shows that the 33 N-terminal residues of CsgF bind inside the ß-barrel of the pore, forming a defined second constriction. In complexes of CsgG bound to a 35-residue CsgF constriction peptide, the second constriction is separated from the primary constriction by ~25 Å. We find that both constrictions contribute to electrical signal modulation during single-stranded DNA translocation. DNA sequencing using a prototype CsgG-CsgF protein pore with two constrictions improved single-read accuracy by 25 to 70% in homopolymers up to 9 nucleotides long.


Assuntos
Nanoporos , Nucleotídeos/genética , Sequência de Bases , Microscopia Crioeletrônica , DNA/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestrutura , Modelos Moleculares
17.
Artigo em Inglês | MEDLINE | ID: mdl-30249778

RESUMO

Embryo movement is essential to the formation of a functional skeleton. Using mouse and chick models, we previously showed that mechanical forces influence gene regulation and tissue patterning, particularly at developing limb joints. However, the molecular mechanisms that underpin the influence of mechanical signals are poorly understood. Wnt signalling is required during skeletal development and is altered under reduced mechanical stimulation. Here, to explore Wnt signalling as a mediator of mechanical input, the expression of Wnt ligand and Fzd receptor genes in the developing skeletal rudiments was profiled. Canonical Wnt activity restricted to the developing joint was shown to be reduced under immobilization, while overexpression of activated ß-catenin following electroporation of chick embryo limbs led to joint expansion, supporting the proposed role for Wnt signalling in mechanoresponsive joint patterning. Two key findings advance our understanding of the interplay between Wnt signalling and mechanical stimuli: first, loss of canonical Wnt activity at the joint shows reciprocal, coordinated misregulation of BMP signalling under altered mechanical influence. Second, this occurs simultaneously with increased expression of several Wnt pathway component genes in a territory peripheral to the joint, indicating the importance of mechanical stimulation for a population of potential joint progenitor cells.This article is part of the Theo Murphy meeting issue 'Mechanics of Development'.


Assuntos
Osso e Ossos/embriologia , Articulações/embriologia , Proteínas Wnt/genética , Animais , Fenômenos Biomecânicos , Embrião de Galinha/embriologia , Camundongos/embriologia , Transdução de Sinais , Proteínas Wnt/metabolismo
18.
Australas Phys Eng Sci Med ; 41(4): 891-904, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30191539

RESUMO

This paper presents a novel electrocardiogram (ECG) denoising approach based on variational mode decomposition (VMD). This work also incorporates the efficacy of the non-local means (NLM) estimation and the discrete wavelet transform (DWT) filtering technique. Current ECG denoising methods fail to remove noise from the entire frequency range of the ECG signal. To achieve the effective ECG denoising goal, the noisy ECG signal is decomposed into narrow-band variational mode functions (VMFs) using VMD method. The idea is to filter out noise from these narrow-band VMFs. To achieve that, the center frequency information associated with each VMFs is used to exclusively divide them into lower- and higher-frequency signal groups. The higher frequency VMFs were filtered out using DWT-thresholding technique. The lower frequency VMFs are denoised through NLM estimation technique. The non-recursive nature of VMD enables the parallel processing of NLM estimation and DWT filtering. The traditional DWT-based approaches need large decomposition levels to filter low frequency noises and at the same time NLM technique suffers from the rare-patch effect in high-frequency region. On the contrary, in the proposed framework both NLM and DWT approaches complement each other to overcome their individual ill-effects. The signal reconstruction is performed using the denoised high frequency and low frequency VMFs. The simulation performed on the MIT-BIH Arrhythmia database shows that the proposed method outperforms the existing state-of-the-art ECG denoising techniques.


Assuntos
Eletrocardiografia/métodos , Processamento de Sinais Assistido por Computador , Algoritmos , Bases de Dados Factuais , Humanos , Razão Sinal-Ruído , Análise de Ondaletas
19.
Development ; 145(5)2018 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-29467244

RESUMO

Dynamic mechanical loading of synovial joints is necessary for normal joint development, as evidenced in certain clinical conditions, congenital disorders and animal models where dynamic muscle contractions are reduced or absent. Although the importance of mechanical forces on joint development is unequivocal, little is known about the molecular mechanisms involved. Here, using chick and mouse embryos, we observed that molecular changes in expression of multiple genes analyzed in the absence of mechanical stimulation are consistent across species. Our results suggest that abnormal joint development in immobilized embryos involves inappropriate regulation of Wnt and BMP signaling during definition of the emerging joint territories, i.e. reduced ß-catenin activation and concomitant upregulation of pSMAD1/5/8 signaling. Moreover, dynamic mechanical loading of the developing knee joint activates Smurf1 expression; our data suggest that Smurf1 insulates the joint region from pSMAD1/5/8 signaling and is essential for maintenance of joint progenitor cell fate.


Assuntos
Padronização Corporal , Proteínas Morfogenéticas Ósseas/metabolismo , Articulações/embriologia , Articulações/metabolismo , Movimento/fisiologia , Animais , Padronização Corporal/genética , Proteínas Morfogenéticas Ósseas/genética , Cartilagem Articular/embriologia , Cartilagem Articular/metabolismo , Diferenciação Celular/genética , Embrião de Galinha , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genética , beta Catenina/genética , beta Catenina/metabolismo
20.
Development ; 145(2)2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29247144

RESUMO

During appendicular skeletal development, the bi-potential cartilage anlagen gives rise to transient cartilage, which is eventually replaced by bone, and to articular cartilage that caps the ends of individual skeletal elements. While the molecular mechanism that regulates transient cartilage differentiation is relatively well understood, the mechanism of articular cartilage differentiation has only begun to be unraveled. Furthermore, the molecules that coordinate the articular and transient cartilage differentiation processes are poorly understood. Here, we have characterized in chick the regulatory roles of two transcription factors, NFIA and GATA3, in articular cartilage differentiation, maintenance and the coordinated differentiation of articular and transient cartilage. Both NFIA and GATA3 block hypertrophic differentiation. Our results suggest that NFIA is not sufficient but necessary for articular cartilage differentiation. Ectopic activation of GATA3 promotes articular cartilage differentiation, whereas inhibition of GATA3 activity promotes transient cartilage differentiation at the expense of articular cartilage. We propose a novel transcriptional circuitry involved in embryonic articular cartilage differentiation, maintenance and its crosstalk with the transient cartilage differentiation program.


Assuntos
Proteínas Aviárias/metabolismo , Cartilagem Articular/embriologia , Cartilagem Articular/metabolismo , Fator de Transcrição GATA3/metabolismo , Fatores de Transcrição NFI/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas Aviárias/deficiência , Proteínas Aviárias/genética , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Embrião de Galinha , Condrócitos/citologia , Condrócitos/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Knockout , Modelos Biológicos , Fatores de Transcrição NFI/deficiência , Fatores de Transcrição NFI/genética , Gravidez , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA